16.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(0,-2),且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m等于( 。
A.-2B.-1C.1D.2

分析 由已知向量的坐標(biāo)求出$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo),再由($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$列式求得m值.

解答 解:∵$\overrightarrow{a}$=(1,m),$\overrightarrow$=(0,-2),
∴$\overrightarrow{a}$+$\overrightarrow$=(1,m-2),
又($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,∴0×1-2(m-2)=0,即m=2.
故選:D.

點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的首項(xiàng)a1=2,且an=2an-1-1(n∈N*,N≥2)
(1)求證:數(shù)列{an-1}為等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{n•an-n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)在R上是單調(diào)函數(shù),且滿足對任意x∈R,都有f[f(x)-3x]=4,則f(2)的值是( 。
A.4B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等差數(shù)列{an}中,a4=5,a7=11,設(shè)bn=(-1)nan,則數(shù)列{bn}的前101項(xiàng)之和S101=-99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ln(x+1)-ax,a∈R.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時(shí),f(x-1)≤$\frac{lnx}{x+1}$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是定義在(0,+∞)上的函數(shù),f'(x)是f(x)的導(dǎo)函數(shù),且總有f(x)>xf'(x),則不等式f(x)>xf(1)的解集為(  )
A.(-∞,0)B.(0,1)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,AB為圓O的直徑,點(diǎn)E,F(xiàn)在圓O上,且AB∥EF,AB=2EF,矩形ABCD所在的平面和圓O所在的平面互相垂直.
(I)證明:OF∥平面BEC;
(Ⅱ)證明:平面ADF⊥平面BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若sinA:sinB:sinC=3:4:5,則此三角形是(  )
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.無窮等差數(shù)列{an}的各項(xiàng)均為整數(shù),首項(xiàng)為a1、公差為d,Sn是其前n項(xiàng)和,3、21、15是其中的三項(xiàng),給出下列命題:
①對任意滿足條件的d,存在a1,使得99一定是數(shù)列{an}中的一項(xiàng);
②存在滿足條件的數(shù)列{an},使得對任意的n∈N*,S2n=4Sn成立;
③對任意滿足條件的d,存在a1,使得30一定是數(shù)列{an}中的一項(xiàng).
其中正確命題的序號為( 。
A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步練習(xí)冊答案