在長方體中,,,、 分別為、的中點(diǎn).
(1)求證:平面;
(2)求證:平面.
(1)參考解析;(2)參考解析
【解析】
試題分析:(1)線面垂直的證明關(guān)鍵是要找到平面內(nèi)兩條相交直線與該直線平行.其中BC⊥DF較易,在通過所給的條件說明DF⊥FC.即可得所要證的結(jié)論.
(2)連結(jié)AC與DB交于點(diǎn)O.通過直線可得四邊形EAOF為平行四邊形所以可得AE//OF即可證得直線以平面的平行.本小題主要就是考查線面的關(guān)系,通過相應(yīng)的判斷定理,結(jié)合具體的圖形即可得到所求的結(jié)論.
試題解析:在長方體中,,,、 分別為、的中點(diǎn).
(1)證:∵BC⊥面DCC1D1.∴BC⊥DF.∵矩形DCC1D1中,DC=2a,DD1=CC1=a.∴DF=FC=∴DF2+FC2=DC2
∴DF⊥FC.∵BC∩FC=C.∴DF⊥面BCF
(2) 證:連結(jié)AC交BD于O,連結(jié)FO,EF .∵.∴.∴四邊形EAOF為平行四邊形
∴AE//OF. ∵AE面BDF. OF面BD.∴AE//面BDF
考點(diǎn):1.線面垂直.2.線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,在長方體中,、分別是棱,上的點(diǎn),,求異面直線與所成角的余弦值;證明平面
求二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)如圖,在長方體中,,,點(diǎn)在棱上移動(dòng).
⑴ 證明://平面;
⑵ 證明:⊥;
⑶ 當(dāng)為的中點(diǎn)時(shí),求四棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com