【題目】已知曲線在點處的切線斜率為0.
(1)討論函數(shù)的單調(diào)性;
(2)在區(qū)間上沒有零點,求實數(shù)的取值范圍.
【答案】(Ⅰ)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(Ⅱ) .
【解析】試題分析:(1)由的定義域為,得,因為,所以,代入,令, ,即可求解函數(shù)的單調(diào)區(qū)間;
(2)由函數(shù)得可得在上是減函數(shù),在上為增函數(shù),由在區(qū)間上沒有零點,得在上恒成立,根據(jù),得,設(shè),求解函數(shù)的最值,即可得到結(jié)論。
試題解析:
解:(Ⅰ) 的定義域為, .
因為,所以, , .
令,得,令,得,
故函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(Ⅱ),由,得,
設(shè),所以在上是減函數(shù),在上為增函數(shù).
因為在區(qū)間上沒有零點,所以在上恒成立,
由,得,令,則.
當時, ,所以在上單調(diào)遞減;
所以當時, ,故,即.
科目:高中數(shù)學 來源: 題型:
【題目】某廠以千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時可獲得的利潤是元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于1500元,求的取值范圍;
(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤最大,問:該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校的一個社會實踐調(diào)查小組,在對該校學生的良好“用眼習慣”的調(diào)查中,隨機發(fā)放了120分問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:
做不到科學用眼 | 能做到科學用眼 | 合計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計 | 75 | 25 | 100 |
(1)現(xiàn)按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數(shù),試求隨機變量的分布列和數(shù)學期望;
(2)若在犯錯誤的概率不超過的前提下認為良好“用眼習慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量,其中.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】衡陽市為增強市民的環(huán)境保護意識,面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機抽取100名后按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,則應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)當時,求函數(shù)的零點;
(2)求的單調(diào)區(qū)間;
(3)當時,若對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,底面,是上的點.
(1)求證:平面;
(2)設(shè),若是的中點,且直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率為.
(1)求橢圓的標準方程;
(2)若點與點均在橢圓上,且關(guān)于原點對稱,問:橢圓上是否存在點(點在一象限),使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在10名學生中,男生有x名,現(xiàn)從10名學生中任選6人去參加某項活動:①至少有1名女生;②5名男生,1名女生;③3名男生,3名女生.若要使①為必然事件,②為不可能事件,③為隨機事件,則x=( )
A.5B.6C.3或4D.5或6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求曲線在處的切線方程;
(2)當時,討論函數(shù)的單調(diào)性;
(3)當時,記函數(shù)的導(dǎo)函數(shù)的兩個零點是和(),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com