【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國(guó)古畫,現(xiàn)收藏于中國(guó)臺(tái)北故宮博物院.該作品簡(jiǎn)介:院角的棗樹(shù)結(jié)實(shí)累累,小孩群來(lái)攀扯,枝椏不;蝿(dòng),粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動(dòng)作,四人每人模仿一個(gè)動(dòng)作.若他們采用抽簽的方式來(lái)決定誰(shuí)模仿哪個(gè)動(dòng)作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )

A. B. C. D.

【答案】B

【解析】

依題意,基本事件的總數(shù)為24,設(shè)事件A表示甲不模仿“爬”且乙不模仿“扶”,則事件A包含1214個(gè)基本事件,故PA)可求.

依題意,基本事件的總數(shù)為24,設(shè)事件A表示甲不模仿“爬”且乙不模仿“扶”,

①若甲模仿“扶”,則A包含16個(gè)基本事件;

②若甲模仿“撿”或“頂”則A包含28個(gè)基本事件,

綜上A包含6+8=14個(gè)基本事件,

所以PA,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定直線my=2x16,拋物線Cy2=axa>0.

1)當(dāng)拋物線C的焦點(diǎn)在直線m上時(shí),確定拋物線C的方程;

2)若△ABC的三個(gè)頂點(diǎn)都在(1)所確定的拋物線C上,且點(diǎn)A的縱坐標(biāo)y=8,△ABC的重心恰在拋物線C的焦點(diǎn)上,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P-ABCD中,底面ABCD是梯形,AB∥DC,AD⊥DC,AB=AD=2,DC=3,平面PDC⊥平面ABCD,E在棱PC上且PE=2EC。

()證明:BE∥平面PAD;

(1)若ΔPDC是正三角形,求三棱錐P-DBE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】蔬菜批發(fā)市場(chǎng)銷售某種蔬菜,在一個(gè)銷售周期內(nèi),每售出1噸該蔬菜獲利500元,未售出的蔬菜低價(jià)處理,每噸虧損100元.統(tǒng)計(jì)該蔬菜以往100個(gè)銷售周期的市場(chǎng)需求量,繪制下圖所示頻率分布直方圖.

(Ⅰ)求的值,并求100個(gè)銷售周期的平均市場(chǎng)需求量(以各組的區(qū)間中點(diǎn)值代表該組的數(shù)值);

(Ⅱ)若經(jīng)銷商在下個(gè)銷售周期購(gòu)進(jìn)了190噸該蔬菜,設(shè)為該銷售周期的利潤(rùn)(單位:元),為該銷售周期的市場(chǎng)需求量(單位:噸).求的函數(shù)解析式,并估計(jì)銷售的利潤(rùn)不少于86000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)的導(dǎo)函數(shù),且,,則下列說(shuō)法正確的是___________.

;

②曲線處的切線斜率最;

③函數(shù)存在極大值和極小值;

在區(qū)間上至少有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家擬在2020年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷費(fèi)用萬(wàn)元,滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件,該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(rùn)(萬(wàn)元)表示為年促銷費(fèi)用(萬(wàn)元)的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求的極值點(diǎn);

(2)若函數(shù)在區(qū)間內(nèi)無(wú)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓中心為坐標(biāo)原點(diǎn)O,對(duì)稱軸為坐標(biāo)軸,且過(guò)M2, N(,1)兩點(diǎn),

I)求橢圓的方程;

II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)A,B,?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案