【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對(duì)任意x∈(0,+∞)恒成立,求b的取值范圍.
【答案】
(1)解:f(x)=(2x+b)ex,f′(x)=(2x+b+2)ex,
∴當(dāng)x∈(﹣∞,﹣ )時(shí),f′(x)<0,當(dāng)x∈(﹣ ,+∞)時(shí),f′(x)>0,
∴f(x)的減區(qū)間為(﹣∞,﹣ ),增區(qū)間為(﹣ ,+∞).
F(x)的定義域?yàn)椋?,+∞),且F′(x)=b﹣ .
∵b<0,∴F′(x)<0,則F(x)在定義域(0,+∞)上為減函數(shù),
要使存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,
則 >0,即b<﹣2.
∴b的取值范圍是(﹣∞,﹣2)
(2)解:F(x+1)=b(x+1)﹣ln(x+1).
要使F(x+1)>b對(duì)任意x∈(0,+∞)恒成立,即bx﹣ln(x+1)>0對(duì)任意x∈(0,+∞)恒成立,
令g(x)=bx﹣ln(x+1),則g′(x)=b﹣ (x>0).
若b≤0,則g′(x)<0,g(x)在(0,+∞)上為減函數(shù),而g(0)=0,不合題意;
若0<b<1,則當(dāng)x∈(0, )時(shí),g′(x)<0,當(dāng)x∈( ,+∞)時(shí),g′(x)>0,
∴ =1﹣b+lnb>0,得b∈;
若b≥1,則 ,g′(x)>0在(0,+∞)恒成立,
g(x)在(0,+∞)上為增函數(shù),g(x)>g(0)=0.
綜上,b的取值范圍是[1,+∞)
【解析】(1)求出函數(shù)f(x)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的符號(hào)求得函數(shù)的單調(diào)區(qū)間,再求出函數(shù)F(x)的導(dǎo)函數(shù),由b<0,可得F′(x)<0,則F(x)在定義域(0,+∞)上為減函數(shù),要使存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,需 >0,求解可得b的范圍;(2)由F(x+1)>b對(duì)任意x∈(0,+∞)恒成立,可得bx﹣ln(x+1)>0對(duì)任意x∈(0,+∞)恒成立,令g(x)=bx﹣ln(x+1),求導(dǎo)可得b≤0時(shí),g′(x)<0,g(x)在(0,+∞)上為減函數(shù),而g(0)=0,不合題意;0<b<1時(shí), =1﹣b+lnb>0,得b∈;b≥1時(shí),g(x)在(0,+∞)上為增函數(shù),g(x)>g(0)=0成立,從而可得b的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,底面是邊長(zhǎng)為2的正方形, 分別為線段, 的中點(diǎn).
(1)求證: ||平面;
(2)四棱柱的外接球的表面積為,求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù) 在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(Ⅰ)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,函數(shù)的解析式(直接寫(xiě)出結(jié)果即可)
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;/span>
(Ⅲ)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市由甲、乙兩家乒乓球俱樂(lè)部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同,甲家每張球臺(tái)每小時(shí)5元;乙家按月計(jì)費(fèi),一個(gè)月中小時(shí)以內(nèi)(含小時(shí))每張球臺(tái)元,超過(guò)小時(shí)的部分每張球臺(tái)每小時(shí)元.某公司準(zhǔn)備下個(gè)月從兩家中的一家租一張球臺(tái)開(kāi)展活動(dòng),活動(dòng)時(shí)間不少于小時(shí),也不超過(guò)小時(shí),設(shè)在甲家租一張球臺(tái)開(kāi)展活動(dòng)小時(shí)的收費(fèi)為元,在乙家租一張球臺(tái)開(kāi)展活動(dòng)小時(shí)的收費(fèi)為元.
(1)試分別寫(xiě)出與的解析式;
(2)選擇哪家比較合算?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且 .
(1)若 ,求△ABC的面積;
(2)若 , ,且c>b,BC邊的中點(diǎn)為D,求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=2018x+log2018x,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c(a、b∈R)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,﹣1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對(duì)任意x∈(0,+∞)恒成立,求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com