7.如果滿足∠A=60°,BC=6,AB=k的銳角△ABC有且只有一個(gè),那么實(shí)數(shù)k的取值范圍是$(2\sqrt{3},4\sqrt{3})$.

分析 依題意,可得C大于30°且小于90°,結(jié)合正弦定理解之即可.

解答 解:由題意,30°<C<90°,∴$\frac{1}{2}$<sinC<1
由正弦定理可得$\frac{k}{sinC}$=$\frac{6}{\frac{\sqrt{3}}{2}}$,
∴k=4$\sqrt{3}$sinC
∴k∈$(2\sqrt{3},4\sqrt{3})$,
故答案為$(2\sqrt{3},4\sqrt{3})$.

點(diǎn)評(píng) 本題考查正弦定理的運(yùn)用,考查特殊角的三角函數(shù),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.閱讀程序框圖,運(yùn)行相應(yīng)的程序,則輸出s的值為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.$(a+\frac{1}{x}){(1+x)^4}$展開(kāi)式中x2的系數(shù)為0,則a=( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z=2m+(4-m2)i滿足
(1)z為純虛數(shù)   
(2)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于第三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.定義在實(shí)數(shù)集R上的奇函數(shù)f(x)滿足:①f(x)在(0,+∞)內(nèi)單調(diào)遞增,②f(-2)=0,則不等式(x+2)f(x)>0的解集為{x|-2<x<0,或 x>2,或x<-2 }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在等差數(shù)列{an}中,
(1)已知a6=10,S5=5,求S8;
(2)已知S4=2,S9=-6,求S12;
(3)已知a2+a4+a6=-3,a3+a5+a7=6,求S20;
(4)已知S3=6,S6=-8,求S9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)正項(xiàng)等比數(shù)列{an}首項(xiàng)a1=2,前n項(xiàng)和為Sn,且滿足2a3+S2=4,則滿足$\frac{66}{65}$<$\frac{{S}_{2n}}{{S}_{n}}$<$\frac{16}{15}$的最大正整數(shù)n的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥平面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分別為SB,SC的中點(diǎn),過(guò)MN作平面MNPQ分別與線段CD,AB相交于P,Q兩點(diǎn)(不與A,B重合).
(1)證明:PQ∥BC;
(2)當(dāng)平面MNPQ將四棱錐S-ABCD分成兩個(gè)體積相等的多面體時(shí),求QB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.從某企業(yè)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)$\overline x$,和樣本方差s2
(同一組數(shù)據(jù)用區(qū)間的中點(diǎn)值作代表);
(2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,近似為樣本方差s2
①利用該正態(tài)分布,求P(187.8<Z<212.2);
②某用戶(hù)從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,記X表示100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品數(shù),利用的結(jié)果,求EX.

查看答案和解析>>

同步練習(xí)冊(cè)答案