17.從某企業(yè)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)$\overline x$,和樣本方差s2
(同一組數(shù)據(jù)用區(qū)間的中點(diǎn)值作代表);
(2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,近似為樣本方差s2
①利用該正態(tài)分布,求P(187.8<Z<212.2);
②某用戶從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,記X表示100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品數(shù),利用的結(jié)果,求EX.

分析 (1)由頻率分布直方圖可估計(jì)樣本特征數(shù)平均數(shù)與方差,用區(qū)間中點(diǎn)值作代表,計(jì)算平均數(shù);方差是矩形橫坐標(biāo)與均值差的平方的加權(quán)平均值;
(2)①由(1)知Z~N(200,150),利用正態(tài)分布求出對(duì)應(yīng)的概率值;②依題意知X~B(100,0.6826),求得EX的值.

解答 解:(1)取個(gè)區(qū)間中點(diǎn)值為區(qū)間代表計(jì)算平均數(shù)為:
$\overline{X}$=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,
方差為:
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150;
(2)①由(1)知,Z~N(200,150)即N(200,12.22),
從而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826,
②由①知,一件產(chǎn)品的質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的概率為0.6826,
依題意知X~B(100,0.6826),
所以EX=100×0.6826=68.26.

點(diǎn)評(píng) 本題主要考查離散型隨機(jī)變量的期望和方差以及正態(tài)分布的特點(diǎn)與應(yīng)用問(wèn)題,是綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如果滿足∠A=60°,BC=6,AB=k的銳角△ABC有且只有一個(gè),那么實(shí)數(shù)k的取值范圍是$(2\sqrt{3},4\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在銳角△ABC中,A=60°.
(1)求 sinA+sinB+sinC的取值范圍;
(2)求 sinAsinBsinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為(  )
A.16B.$4\sqrt{2}$C.48D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知cos31°=a,則sin239°的值為-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某教育機(jī)構(gòu)為了解本地區(qū)高三學(xué)生上網(wǎng)的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每天上網(wǎng)時(shí)間的頻率分布直方圖:將每天上網(wǎng)時(shí)間不低于40分鐘的學(xué)生稱為“上網(wǎng)迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“上網(wǎng)迷“與性別有關(guān)?
非上網(wǎng)迷上網(wǎng)迷合計(jì)
1055
合計(jì)
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量高三學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名學(xué)生中的“上網(wǎng)迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X=2的概率.
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{({n}_{11}+{n}_{12})({n}_{21}+{n}_{22})({n}_{11}+{n}_{21})({n}_{12}+{n}_{22})}$,
P(X2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知下列四個(gè)關(guān)系:
①a>b?ac2>bc2;
②a>b⇒$\frac{1}{a}$<$\frac{1}$;
③a>b>0,c>d⇒$\frac{a}9j5z7fn$>$\frac{c}$;
④a>b>0⇒ac<bc
其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線是4ax±by=0,則其離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.河南多地遭遇跨年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生在家躲霾.鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》,自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)Ⅰ級(jí)響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長(zhǎng)對(duì)這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況匯總成表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)469634
(1)請(qǐng)補(bǔ)全被調(diào)查人員年齡的頻率分布直方圖;
(2)若從年齡在[55,65),[65,75]的被調(diào)查者中分別隨機(jī)選取一人進(jìn)行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案