A. | ${({x-\frac{1}{3}})^2}+{({y-\frac{{2\sqrt{3}}}{3}})^2}=\frac{16}{3}$ | B. | ${({x-\frac{1}{3}})^2}+{({y-\frac{{\sqrt{3}}}{3}})^2}=\frac{16}{3}$ | ||
C. | ${({x-3})^2}+{({y-2\sqrt{3}})^2}=16$ | D. | ${({x-3})^2}+{({y-\sqrt{3}})^2}=16$ |
分析 求出直線l的斜率,可得直線方程,與拋物線方程聯(lián)立,利用|MN|,求出p,可得M的坐標(biāo),即可求出以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程.
解答 解:如圖,過點(diǎn)N作NE⊥MM′,由拋物線的定義,|MM′|=|MF|,|NN′|=|NF|.
解三角形EMN,得∠EMF=$\frac{π}{3}$,所以直線l的斜率為$\sqrt{3}$,
其方程為y=$\sqrt{3}$(x-$\frac{p}{2}$),
與拋物線方程聯(lián)立可得3x2-5px+$\frac{3}{4}$p2=0,
∴x1+x2=$\frac{5}{3}$p,
∴|MN|=$\frac{8}{3}$p=$\frac{16}{3}$,
∴p=2,
∴M(3,2$\sqrt{3}$),r=4,
∴圓的標(biāo)準(zhǔn)方程為(x-3)2+(y-2$\sqrt{3}$)2=16.
故選:C.
點(diǎn)評 本題主要考查拋物線定義以及拋物線的性質(zhì),以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程的求法,考查轉(zhuǎn)化思想以及數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ①③ | C. | ①② | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6種 | B. | 24種 | C. | 30種 | D. | 36種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {4,6} | C. | {1,3,5} | D. | {2,4,6} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com