分析 (1)證明:當(dāng)a=-8時(shí),利用絕對值三角不等式求得f(x)的最小值為10,從而證得結(jié)論.
(2)利用絕對值三角不等式求得f(x)的最小值為|2-a|,可得|2-a|≥a,由此求得實(shí)數(shù)a的取值范圍.
解答 (1)證明:當(dāng)a=-8時(shí),f(x)=|x-2|+|x+8|,x∈R,∴f(x)=|x-2|+|x+8|≥10,當(dāng)且僅當(dāng)-8≤x≤2時(shí),取等號.
∴l(xiāng)gf(x)≥lg10=1,即 lgf(x)≥1成立.
(2)解:∵f(x)≥a,x∈R時(shí)恒成立,∴|x-2|+|x-a|≥a,x∈R時(shí)恒成立.
∵|x-2|+|x-a|≥|2-a|,x∈R,∴|2-a|≥a.求得a≤1.
點(diǎn)評 本題主要考查絕對值三角不等式的應(yīng)用,函數(shù)的恒成立問題,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{1}{2}]$ | B. | $(-∞,\frac{1}{2})$ | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com