【題目】已知銳角△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,且2csinB= b.
(1)求角C的大;
(2)若邊c=1,求△ABC面積的最大值.
【答案】
(1)解:∵2csinB= b,
∴2sinCsinB= sinB,
∵sinB≠0,∴sinC= ,
又△ABC是銳角三角形,∴C=
(2)解:由余弦定理可得:c2=a2+b2﹣2abcosC,
∴1=a2+b2﹣2ab ≥2ab﹣ab=ab,當(dāng)且僅當(dāng)a=b=1時取等號.
∴△ABC面積的最大值= = =
【解析】(1)由2csinB= b,利用正弦定理可得:2sinCsinB= sinB,sinB≠0,化為sinC= ,又△ABC是銳角三角形,可得C.(2)由余弦定理可得:c2=a2+b2﹣2abcosC,利用基本不等式的性質(zhì)可得:1=a2+b2﹣2ab ≥2ab﹣ab=ab,當(dāng)且僅當(dāng)a=b=1時取等號.即可得出△ABC面積的最大值.
【考點精析】利用正弦定理的定義和余弦定理的定義對題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義min{a,b}= ,若函數(shù)f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在區(qū)間[m,n]上的值域為[ , ],則區(qū)間[m,n]長度的最大值為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( )x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱.
(1)若f(g(x))=6﹣x2 , 求實數(shù)x的值;
(2)若函數(shù)y=g(f(x2))的定義域為[m,n](m≥0),值域為[2m,2n],求實數(shù)m,n的值;
(3)當(dāng)x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時,不等式 恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個不同的零點,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C所對的邊,角C是鈍角,且sinB= .
(1)求角C的值;
(2)若b=2,△ABC的面積為 ,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A.命題“若x≠2或y≠7,則x+y≠9”的逆命題為真命題
B.命題“若x2=4,則x=2”的否命題是“若x2=4,則x≠2”
C.命題“若x2<1,則﹣1<x<1”的逆否命題是“若x<﹣1或x>1,則x2>1”
D.若命題p:x∈R,x2﹣x+1>0,q:x0∈(0,+∞),sinx0>1,則(¬p)∨q為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosα,sinα), =(﹣2,2).
(1)若 = ,求(sinα+cosα)2的值;
(2)若 ,求sin(π﹣α)sin( )的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com