【題目】在△ABC中,a,b,c分別為角A,B,C所對的邊,角C是鈍角,且sinB=
(1)求角C的值;
(2)若b=2,△ABC的面積為 ,求c的值.

【答案】
(1)解:由sinB= 得2csinB=b,由正弦定理得:2sinCsinB=sinB,

所以sinB(2sinC﹣1)=0,

因?yàn)閟inB≠0,

所以sinC= ,

因?yàn)镃是鈍角,

所以C=


(2)解:因?yàn)镾= absinC= a= ,a=2 ,

由余弦定理得c2=a2+b2﹣2abcosC=12+4﹣2× (﹣ )=28,

所以c=2 ,即c的值為2


【解析】(1)由正弦定理化簡已知可得sinB(2sinC﹣1)=0,由sinB≠0解得sinC= ,結(jié)合C是鈍角,即可解得C的值.(2)由已知及三角形面積公式可求a的值,由余弦定理即可解得c的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在某段路程中的行駛速率與時間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說明所求面積的實(shí)際含義;
(2)假設(shè)這輛汽車在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車在行駛這段路程時里程表讀數(shù)s(km)與時間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代城市大多是棋盤式布局(如上海道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1 , y1)、B(x2 , y2)兩點(diǎn)間的“直角距離”為:DAB)=|x1﹣x2|+|y1﹣y2|.

(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”
為2的“格點(diǎn)”的坐標(biāo);(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)定義:“圓”是所有到定點(diǎn)“直角距離”為定值的點(diǎn)組成的圖形,點(diǎn)A(1,3),B(1,1),C(3,3),求經(jīng)過這三個點(diǎn)確定的一個“圓”的方程,并畫出大致圖象;
(3)設(shè)P(x,y),集合B表示的是所有滿足DPO≤1的點(diǎn)P所組成的集合,
點(diǎn)集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,且2csinB= b.
(1)求角C的大小;
(2)若邊c=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{bn}的前n項(xiàng)和是Sn , 且bn=1﹣2Sn , 又?jǐn)?shù)列{an}、{bn}滿足點(diǎn){an , 3 }在函數(shù)y=( x的圖象上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=anbn+ ,求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點(diǎn),若存在求出直線的方程l,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論: ①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(﹣∞,0);
③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=x2 , 則當(dāng)x<0時,f(x)=﹣x2;
④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對稱,則對任意實(shí)數(shù)x,y都有f(xy)=f(x)+f(y).
則正確結(jié)論的序號是(請將所有正確結(jié)論的序號填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.
(3)設(shè) ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A=[﹣1,3],B=[m,m+6],m∈R.
(1)當(dāng)m=2時,求A∩RB;
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案