當a>0時,函數(shù)f(x)=(x2-ax)ex的圖象大致是( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應用
分析:利用函數(shù)圖象的取值,函數(shù)的零點,以及利用導數(shù)判斷函數(shù)的圖象.
解答: 解:由f(x)=0,解得x2-2ax=0,即x=0或x=2a,
∵a>0,∴函數(shù)f(x)有兩個零點,∴A,C不正確.
設a=1,則f(x)=(x2-2x)ex,
∴f'(x)=(x2-2)ex,
由f'(x)=(x2-2)ex>0,解得x>
2
或x<-
2

由f'(x)=(x2-2)ex<0,解得,-
2
<x<
2

即x=-
2
是函數(shù)的一個極大值點,
∴D不成立,排除D.
故選B.
點評:本題主要考查函數(shù)圖象的識別和判斷,充分利用函數(shù)的性質(zhì),本題使用特殊值法是判斷的關鍵,本題的難度比較大,綜合性較強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cosα+2sinα=0,其中
π
2
<α<π.
(Ⅰ)求
sinα-2cosα
2sinα-cosα
的值;
(Ⅱ)若sinβ=
3
5
,
π
2
<β<π,求cos﹙α+β﹚的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線y=-x2+9與x軸交于兩點A,B,點C,D在拋物線上(點C在第一象限),CD∥AB.記|CD|=2x,梯形ABCD面積為S.
(1)求面積S以x為自變量的函數(shù)式;
(2)若
|CD|
|AB|
=k其中k為常數(shù),且0<k<1,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PC⊥平面ABC,△ABC為正三角形,D,E,F(xiàn)分別是BC,PB,CA的中點.
(1)證明:PC∥平面DEF;
(2)證明:平面PBF⊥平面PAC;
(3)若PC=AB=2,求三棱錐P-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一次函數(shù)f(x),滿足f(1)=0,f(3)=-2,
(1)求函數(shù)解析式,作出函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)在x∈[-1,2)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

偶函數(shù)f(x)在[0,+∞)上為增函數(shù),若不等式f(ax-1)<f(2+x2)恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)若a∈R,則“a2>a”是“a>1”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在同一直角坐標系中,函數(shù)f(x)=m2x2+4mx和函數(shù)g(x)=x2+4x-3的圖象與直線x=a分別交于M、N兩點,若對于任意實數(shù)a,點M始終比點N高,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若y=f(x)是定義在[a,2a+1]上的奇函數(shù),則a=
 

查看答案和解析>>

同步練習冊答案