【題目】如圖,在三棱柱中,,,平面ABC.
若,求直線與平面所成的角的大小;
在的條件下,求二面角的大小;
若,平面,G為垂足,令其中p、q、,求p、q、r的值.
【答案】(1);(2);(3),,.
【解析】
建立如圖所示的空間直角坐標(biāo)系,設(shè)平面的法向量為y,,則,即可得出,利用即可得出.
在的條件下,平面的法向量為0,,取平面ABC的法向量0,,可得,即可得出二面角的平面角.
作,M為垂足由平面可得,平面平面平面.
作,垂足為G,則平面利用三角形面積計算公式、勾股定理及其其中p、q、,即可得出.
解:建立如圖所示的空間直角坐標(biāo)系,
0,,0,,,0,,
,0,,1,,
設(shè)平面的法向量為y,,則,
,
取,則0,,
.
直線與平面所成的角為.
在的條件下,平面的法向量為0,,
取平面ABC的法向量0,,
則,
由圖可知:二面角的平面角為鈍角,
二面角的平面角為.
作,M為垂足.
由平面,
又,
平面.
平面平面.
作,垂足為G,則平面.
在,,.
.
.
,
可得0,,
其中p、q、,
0,,0,,
,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某交通要道以往的日車流量(單位:萬輛)進(jìn)行統(tǒng)計,得到如下記錄:
日車流量x | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
頻率 | 0.05 | 0.25 | 0.35 | 0.25 | 0.10 | 0 |
將日車流量落入各組的頻率視為概率,并假設(shè)每天的車流量相互獨(dú)立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日車流量都不低于10萬輛且另1天的日車流量低于5萬輛的概率;
(2)用X表示在未來3天時間里日車流量不低于10萬輛的天數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校的課外綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到
市氣象觀測站與市醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到
如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) (個) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
.
參考公式:回歸直線,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+bx﹣alnx.
(1)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n.
(2)若對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間上任取一個數(shù)記為a,在區(qū)間上任取一個數(shù)記為b.
若a,,求直線的斜率為的概率;
若a,,求直線的斜率為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣ cos2x.
(1)求f(x)的最小周期和最小值;
(2)將函數(shù)f(x)的圖象上每一點的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象.當(dāng)x∈ 時,求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com