【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+1=2f(an-1)+1,且a1=3,an>1.
(1)設(shè)bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn.
【答案】見解析
【解析】
(1)證明:∵函數(shù)f(x)=x2+bx為偶函數(shù),
∴b=0,
∴f(x)=x2,
∴an+1=2(an-1)2+1,
∴an+1-1=2(an-1)2,
∴===2.
∵a1=3,
∴b1=log22=1,
∴bn+1=2n.
即bn=2n-1,
∴數(shù)列{bn+1}是以2為首項(xiàng),以2為公比的等比數(shù)列.
(2)解:由題意得cn=n2n-n.
設(shè)An=1×2+2×22+3×23+…+n×2n,
設(shè)Bn=1+2+3+4+…+n=,
∴2An=1×22+2×23+3×24+…+n×2n+1.
∴-An=2+22+23+…+2n-n×2n+1=-n×2n+1=2n+1-n×2n+1-2,
∴An=(n-1)2n+1+2.
∴Sn=An-Bn=(n-1)2n+1+2-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】傾斜角為的直線過點(diǎn)P(8,2),直線和曲線C:(為參數(shù))交于不同的兩點(diǎn)M1、M2.
(1)將曲線C的參數(shù)方程化為普通方程,并寫出直線的參數(shù)方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?
(III)當(dāng)時(shí),設(shè)函數(shù),若在區(qū)間上至少存在一個(gè),使得成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,x∈[1,+∞).
(1)當(dāng)a=時(shí),判斷并證明f(x)的單調(diào)性;
(2)當(dāng)a=-1時(shí),求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)在處取最小值.
(1)求的值,并化簡(jiǎn) ;
(2)在ABC中,分別是角A,B, C的對(duì)邊,已知,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, .
(1)當(dāng)時(shí), 為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線C:y2=4x,過點(diǎn)A(1,2)作拋物線C的弦AP,AQ.
(1)若AP⊥AQ,證明:直線PQ過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(2)假設(shè)直線PQ過點(diǎn)T(5,-2),請(qǐng)問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個(gè)數(shù),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱中,底面是矩形,且, , ,若為的中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>