5.在△ABC中,內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若$b=\sqrt{2}$,求△ABC面積的最大值.

分析 (1)由正弦定理得到:sinA=sinCsinB+sinBcosC,從而cosBsinC=sinCsinB,由此能求出A+C的值.
(2)由余弦定理得到:b2=a2+c2-2accosB,從而$ac≤\frac{2}{{2-\sqrt{2}}}=2+\sqrt{2}$,當(dāng)且僅當(dāng)$a=c=\sqrt{2+\sqrt{2}}$時(shí)“=”成立,由此能求出△ABC面積的最大值.

解答 解:(1)由正弦定理得到:sinA=sinCsinB+sinBcosC
因?yàn)樵谌切沃,sinA=sin[π-(B+C)]=sin(B+C)
所以sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC
所以cosBsinC=sinCsinB
因?yàn)镃∈(0,π),sinC≠0,所以cosB=sinB即tanB=1,B∈(0,π)
所以$B=\frac{π}{4}$即$A+C=\frac{3}{4}π$.
(2)由余弦定理得到:b2=a2+c2-2accosB,所以$2={a^2}+{c^2}-\sqrt{2}ac$,
所以$2+\sqrt{2}ac={a^2}+{c^2}≥2ac$即$ac≤\frac{2}{{2-\sqrt{2}}}=2+\sqrt{2}$
當(dāng)且僅當(dāng)a=c即$a=c=\sqrt{2+\sqrt{2}}$時(shí)“=”成立,
而${S_{△ABC}}=\frac{1}{2}acsinB=\frac{{\sqrt{2}}}{4}ac$,
所以△ABC面積的最大值為$\frac{{1+\sqrt{2}}}{2}$.

點(diǎn)評(píng) 本題考查三角形兩個(gè)內(nèi)角和的求法,考查三角形面積的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意正弦定理、余弦定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆河北衡水中學(xué)高三上學(xué)期調(diào)研三考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

如圖,在梯形中,,平面平面,四邊形是矩形,,點(diǎn)在線(xiàn)段

(1)求證:平面;

(2)當(dāng)為何值時(shí),平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆河北衡水中學(xué)高三上學(xué)期調(diào)研三考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

復(fù)數(shù)的共軛復(fù)數(shù)的虛部是( )

A. B. C.-1 D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

若雙曲線(xiàn))的左、右焦點(diǎn)分別為被拋物線(xiàn)的焦點(diǎn)分成的兩段,則雙曲線(xiàn)的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知),其中為虛數(shù)單位,則( )

A.-1 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若(a2+b2-c2)tanC=ab,則角C的值為( 。
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在極坐標(biāo)系中,曲線(xiàn)ρ=sinθ+2與ρsinθ=2的公共點(diǎn)到極點(diǎn)的距離為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.選修4-4:坐標(biāo)系與參數(shù)方程
曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2的極坐標(biāo)方程為ρcos2θ=sinθ.
(1)求曲線(xiàn)C1的極坐標(biāo)方程和曲線(xiàn)C2的直角坐標(biāo)方程;
(2)若射線(xiàn)l:y=kx(x≥0)與曲線(xiàn)C1,C2的交點(diǎn)分別為A,B(A,B異于原點(diǎn)),當(dāng)斜率k∈(1,$\sqrt{3}$]時(shí),求|OA|•|OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某高校一專(zhuān)業(yè)在一次自主招生中,對(duì)20名已經(jīng)選拔入圍的學(xué)生進(jìn)行語(yǔ)言表達(dá)能力和邏輯思維能力測(cè)試,結(jié)果如表:
語(yǔ)言表達(dá)能力
人數(shù)
邏輯思維能力
一般良好優(yōu)秀
一般221
良好4m1
優(yōu)秀13n
由于部分?jǐn)?shù)據(jù)丟失,只知道從這20名參加測(cè)試的學(xué)生中隨機(jī)抽取一人,抽到語(yǔ)言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生的概率為$\frac{2}{5}$.
(1)從參加測(cè)試的語(yǔ)言表達(dá)能力良好的學(xué)生中任意抽取2名,求其中至少有一名邏輯思維能力優(yōu)秀的學(xué)生的概率;
(2)從參加測(cè)試的20名學(xué)生中任意抽取2名,設(shè)語(yǔ)言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為X,求隨機(jī)變量X的分布列及其均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案