C
分析:根據(jù)三角形中線段長度之間的等量關(guān)系判斷出條件p成立時,條件q也成立;反之通過三角形的重心滿足的性質(zhì):到頂點距離等于到對邊中點的2倍判斷出條件q成立得到條件p成立,利用充要條件的定義加以判斷.
解答:①∵P為AB邊上(除A外)的任意一點所以當P與B重合時,
可得,
∴
,
此時Q為AC邊中點,
即直線BM過AC邊中點.
同理,因為Q為AC邊上(除A外)的任意一點
∴當Q與C重合時,可得,
∴
,此時P為AB邊中點,
即直線CM過AB邊中點
設(shè)D為AC邊中點,E為AB邊中點,連接ED,直線AM分別交ED、BC于G、F,
∵ED是△ABC的一條中位線,
∴
∵
,
∴
,
∴BF=FC
∵BF=FC,
∴F為BC邊上中點因為直線BM過AC邊中點D,直線CM過AB邊中點E,直線 AM過BC邊中點F
∴M為△ABC的重心.
②若已知M為重心,亦可求證:
.
證明:作BF、CE平行于PQ,分別交AC、AB于F、E,
AM的延長分別交CE、BC、BF于G、D、H,
∵M為△ABC的重心,
∴D為BC邊中點
∵BF平行于PQ,CE平行于PQ,
∴BF平行于CE
∵BD=DC,BF平行于CE,
∴GD=DH
∵M為△ABC的重心,
∴AM=2MD=MD+(MG+GD)
∵GD=DH,AM=MD+(MG+GD)
∴AM=MD+MG+DH=(MD+DH)+MG=MH+MG
∵AM=MH+MG,
∴3AM=(AM+MH)+(AM+MG)=AH+AG
∵3AM=AH+AG
∴
∵BF平行于PQ,
∴
∵CE平行于PQ,
∴
∴
∴p是q的充要條件
故選C
點評:判斷應(yīng)該條件是另一個條件的什么條件,應(yīng)該先判斷前者成立是否能推出后者成立,反之后者成立是否能推出前者成立,再利用充要條件的定義加以判斷;解決三角形的重心問題要注意三角形的重心滿足的性質(zhì):到頂點距離等于到對邊中點的2倍.