【題目】已知函數(shù)的最小值為,其中.
(1)求的值;
(2)若對任意的,有成立,求實數(shù)的范圍;
(3)證明:
【答案】(1)a=1;(2) ;(3)證明見解析.
【解析】試題分析; (1)對 進行求導,已知最小值為0,可得極小值也為0,得 ,從而求出的值;
(2)由題意任意的 ,有 成立,可以令 求出 的最大值小于0即可,可以利用導數(shù)研究的最值;
(3)由(2)知:令得:
令得: < ,累加即可的證
試題解析;(1)函數(shù)的定義域為.
由得: > 又由得:
∴在單調(diào)遞減,在單調(diào)遞增
∴
(2)設 ,則在恒成立 (*)
注意到
>0 ……5分
又
①當<0 <)時,由得.
∵在單減, 單增,這與(*)式矛盾;
②當時
∵在恒成立 ∴符合(*)
∴
(3)由(2)知:令得:
令得: <
當i=1時, <2;
當時, <
從而<<2.
科目:高中數(shù)學 來源: 題型:
【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設甲、乙兩種大樹移栽的成活率分別為和,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)ξ的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 為其導函數(shù).
(1) 設,求函數(shù)的單調(diào)區(qū)間;
(2) 若, 設, 為函數(shù)圖象上不同的兩點,且滿足,設線段中點的橫坐標為 證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求的單調(diào)區(qū)間;
(Ⅱ)若的圖象與的圖象有3個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術》是我國古代數(shù)學成就的杰出代表作,其中《方田》章計算弧田面積所用的經(jīng)驗公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計算出弧田的面積約為( )
A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(數(shù)學文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的一項質量指標值,由測量結果得到如圖頻率分布直方圖:
(Ⅰ)求直方圖中的值;
(Ⅱ)由頻率分布直方圖可以認為,這種產(chǎn)品的質量指標值服從正態(tài)分布,試計算數(shù)據(jù)落在上的概率.
參考數(shù)據(jù):若,則, .
(Ⅲ)設生產(chǎn)成本為,質量指標為,生產(chǎn)成本與質量指標之間滿足函數(shù)關系假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,試計算生產(chǎn)該食品的平均成本.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com