【題目】已知函數(shù),
(Ⅰ)若曲線在處的導數(shù)等于,求實數(shù);
(Ⅱ)若,求的極值;
(Ⅲ)當時,在上的最大值為,求在該區(qū)間上的最小值
【答案】(1).
(2)的極大值為,的極小值為.
(3).
【解析】分析:(1)首先對函數(shù)求導,將代入,從而求得,得到關于的等量關系式,從而求得結果;
(2)將代入函數(shù)解析式,對函數(shù)求導,列表確定出函數(shù)的單調區(qū)間,從而確定極值點,代入求得函數(shù)的極值;
(3)令,求得對應的根,得到函數(shù)的單調區(qū)間,從而求得函數(shù)在上的最大值點,代入求得的值,進一步求得函數(shù)在相應區(qū)間上的最小值.
詳解:(Ⅰ)因為,曲線在 ,
依題意:.
(Ⅱ)當時,,
+ | - | + | ||||
單調增 | 單調減 | 單調增 |
所以,的極大值為,的極小值為.
(Ⅲ)令,得,
在上單調遞增,在上單調遞減,
當時,有, 所以在上的最小值為,
又,
所以在上的最大值為,解得:.
故在上的最小值為
科目:高中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把函數(shù)y=sin(2x+)的圖象向右平移個單位,再把所得圖象上各點的橫坐標縮短到原來的 , 則所得圖象的函數(shù)解析式是( 。
A.y=sin(4x+π)
B.y=sin(4x+)
C.y=sin4x
D.y=sinx
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)響應“綠水青山就是金山銀山”的號召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經調研發(fā)現(xiàn):某珍稀水果樹的單株產量(單位:千克)與施用肥料(單位:千克)滿足如下關系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費)元.已知這種水果的市場售價大約為15元/千克,且銷路暢通供不應求.記該水果樹的單株利潤為(單位:元).
(Ⅰ)求的函數(shù)關系式;
(Ⅱ)當施用肥料為多少千克時,該水果樹的單株利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)設 ,若是偶函數(shù),求實數(shù)的值;
(2)設,求函數(shù)在區(qū)間上的值域;
(3)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為中國傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結構,這種三維的拼插器具內部的凹凸部分(即樟卯結構)嚙合,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱,六根完全相同的正四棱柱分成三組,經90°榫卯起來.現(xiàn)有一魯班鎖的正四校柱的底面正方形邊長為1,欲將其放入球形容器內(容器壁的厚度忽略不計),若球形容器表面積的最小值為30π,則正四棱柱的高為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學將100名高一新生分成水平相同的甲、乙兩個平行班,每班50人,某教師采用、兩種不同的教學模式分別在甲、乙兩個班進行教改實驗,為了了解教學效果,期末考試后,該教師分別從兩班中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如圖所示,記成績不低于90分為“成績優(yōu)秀”.
(1)在乙班的20個個體中,從不低于86分的成績中隨機抽取2人,求抽出的兩個人均“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表;能否在犯錯誤的概率不超過0.10的前提下認為成績優(yōu)秀與教學模型有關.
甲班() | 乙班() | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線-=1(a>0,b>0)的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A,B兩點,F1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從,,,,這五個數(shù)字中任取個組成無重復數(shù)字的三位數(shù),當三個數(shù)字中有和時,需排在的前面(不一定相鄰),這樣的三位數(shù)有( )個.
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com