【題目】如圖, 是圓柱的母線(xiàn), 是的直徑, 是底面圓周上異于的任意一點(diǎn), , .
(1)求證:
(2)當(dāng)三棱錐的體積最大時(shí),求與平面所成角的大小;
(3)上是否存在一點(diǎn),使二面角的平面角為45°?若存在,求出此時(shí)的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)45°;(3)存在這樣的點(diǎn)且,證明見(jiàn)解析.
【解析】試題分析:(1)平面平面, ,所以平面, ;(2)時(shí),三棱錐體積的最大, 與平面所成角度為45°;(3)存在這樣的點(diǎn)且。
試題解析:
(1)∵平面, 平面
∴,又,
∴平面
又∵平面,
∴平面平面,
而平面平面,
∴平面,而平面,
∴
(2)設(shè),在中,
∵平面,
∴是三棱錐的高
因此三棱錐的體積為
∵, ,
∴當(dāng),即時(shí),三棱錐體積的最大值為
此時(shí)為等腰直角三角形,
∴與平面所成角度為45°
(3)存在這樣的點(diǎn)且,理由如下:
記的中點(diǎn)為,連接,
∵為等腰直角三角形
∴,由(1)知,
∴平面,
又平面,∴
∴是二面角的平面角,即
為等腰直角三角形, ,
∴
在中,
在和中,可解得,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線(xiàn)段的端點(diǎn),端點(diǎn)在圓上運(yùn)動(dòng)
(Ⅰ)求線(xiàn)段的中點(diǎn)的軌跡方程.
(Ⅱ) 設(shè)動(dòng)直線(xiàn)與圓交于兩點(diǎn),問(wèn)在軸正半軸上是否存在定點(diǎn),使得直線(xiàn)與直線(xiàn)關(guān)于軸對(duì)稱(chēng)?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y=3sin(2x + )
(1)求最小正周期、對(duì)稱(chēng)軸和對(duì)稱(chēng)中心;
(2)簡(jiǎn)述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的橢圓,右焦點(diǎn)(1,0),且過(guò) .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求斜率為2的一組平行弦的中點(diǎn)軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,且滿(mǎn)足.
(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;
(2)設(shè)函數(shù),求在區(qū)間上的最大值;
(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個(gè)不同的正根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性并證明;
(2)當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線(xiàn)段AB的兩個(gè)端點(diǎn)A、B分別在x軸和y軸上滑動(dòng),且∣AB∣=2.
(1)求線(xiàn)段AB的中點(diǎn)P的軌跡C的方程;
(2)求過(guò)點(diǎn)M(1,2)且和軌跡C相切的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將名學(xué)生分成兩組參加城市綠化活動(dòng),其中組布置盆盆景, 組種植棵樹(shù)苗.根據(jù)歷年統(tǒng)計(jì),每名學(xué)生每小時(shí)能夠布置盆盆景或者種植棵樹(shù)苗.設(shè)布置盆景的學(xué)生有人,布置完盆景所需要的時(shí)間為,其余學(xué)生種植樹(shù)苗所需要的時(shí)間為(單位:小時(shí),可不為整數(shù)).
⑴寫(xiě)出、的解析式;
⑵比較、的大小,并寫(xiě)出這名學(xué)生完成總?cè)蝿?wù)的時(shí)間的解析式;
⑶應(yīng)怎樣分配學(xué)生,才能使得完成總?cè)蝿?wù)的時(shí)間最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是( )
A. 方程有實(shí)根函數(shù)有零點(diǎn)
B. 有兩個(gè)不同的實(shí)根
C. 函數(shù)在上滿(mǎn)足,則在內(nèi)有零點(diǎn)
D. 單調(diào)函數(shù)若有零點(diǎn),至多有一個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com