【題目】下列說法不正確的是( )

A. 方程有實(shí)根函數(shù)有零點(diǎn)

B. 有兩個(gè)不同的實(shí)根

C. 函數(shù)上滿足,則內(nèi)有零點(diǎn)

D. 單調(diào)函數(shù)若有零點(diǎn),至多有一個(gè)

【答案】C

【解析】A.根據(jù)函數(shù)零點(diǎn)的定義可知:方程f(x)=0有實(shí)根函數(shù)y=f(x)有零點(diǎn),∴A正確.

B.方程對(duì)應(yīng)判別式△=9-4×(-1)×6=9+24=33>0,∴-x2+3x+6=0有兩個(gè)不同實(shí)根,∴B正確.

C.根據(jù)根的存在性定理可知,函數(shù)y=fx)必須是連續(xù)函數(shù),否則不一定成立,比如函數(shù)f(x)滿足條件f-1f1)<0,但y=fx)在(-1,1)內(nèi)沒有零點(diǎn),∴C錯(cuò)誤.

D.若函數(shù)為單調(diào)函數(shù),則根據(jù)函數(shù)單調(diào)性的定義和函數(shù)零點(diǎn)的定義可知,函數(shù)和x軸至多有一個(gè)交點(diǎn),∴單調(diào)函數(shù)若有零點(diǎn),則至多有一個(gè),∴D正確.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓柱的母線, 的直徑, 是底面圓周上異于的任意一點(diǎn), , .

(1)求證:

(2)當(dāng)三棱錐的體積最大時(shí),求與平面所成角的大;

(3)上是否存在一點(diǎn),使二面角的平面角為45°?若存在,求出此時(shí)的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , , , 分別為的中點(diǎn).

(1)求證: 平面;

(2)求證: 平面;

(3)若二面角的大小為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解1000名高一新生的身體生長狀況,用系統(tǒng)抽樣法(按等距的規(guī)則)抽取40名同學(xué)進(jìn)行檢查,將學(xué)生從1~1000進(jìn)行編號(hào),現(xiàn)已知第18組抽取的號(hào)碼為443,則第一組用簡單隨機(jī)抽樣抽取的號(hào)碼為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.(14分)

(1)此方程表示圓,求m的取值范圍;

(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求m的值;

(3)在(2)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱, 平面, , 在線段, , .

1)求證: ;

2)試探究:在上是否存在點(diǎn),滿足平面,若存在,請(qǐng)指出點(diǎn)的位置,并給出證明;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為,田忌的三匹馬分別為 .三匹馬各比賽一次,勝兩場(chǎng)者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示: .

(1)如果雙方均不知道對(duì)方馬的出場(chǎng)順序,求田忌獲勝的概率;

(2)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實(shí)情,得知齊王第一場(chǎng)必出上等馬,那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱, 的中點(diǎn).

求證:(1)平面

(2)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是

查看答案和解析>>

同步練習(xí)冊(cè)答案