【題目】5名男生4名女生站成一排,求滿足下列條件的排法:

(1)女生都不相鄰有多少種排法?

(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?

(3)男甲不在首位,男乙不在末位,有多少種排法?

【答案】(1)43200(2)60480(3)287280

【解析】試題分析:(1)不相鄰排法,可使用插空法,先將男生排好,再將男生排入女生的空檔中;(2)可以先將所有學(xué)生任意全排列,再將男生三人的多余排法除去;(3)分類,先考慮甲在末位;甲在首位,乙在末位;甲不在首位,乙在末位;甲乙都在首位與末位的.

試題解析:解:(1)任何2名女生都不相鄰,則把女生插空,所以先排男生再讓女生插到男生的空中,共有 (種)不同排法.

(2)9人的所有排列方法有種,其中甲、乙、丙的排序有種,又對(duì)應(yīng)甲、乙、丙只有 一種排序,所以甲、乙、丙排序一定的排法有 (種).

(3)法一:甲不在首位,按甲的排法分類,若甲在末位,則有種排法,若甲不在末位,則甲有種排法,乙有種排法,其余有種排法,綜上共有(+)= 287280(種)排法. (或者)-2+=287280(種)

(或者)-2 -=287280(種)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=

(1)求證:平面PBD⊥平面PAC;

(2)求三棱錐P--BDC的體積。

(3)在線段PC上是否存在一點(diǎn)E,使PC⊥平面EBD成立.如果存在,求出EC的長;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, 平分, 的中點(diǎn), , .

(1)證明: 平面.

(2)證明: 平面.

(3)求直線與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

1)求的值;

2)求的單調(diào)區(qū)間;

3)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意>0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB=1,AD=,F(xiàn)將長方形沿對(duì)角線BD折起,使AC=a,得到一個(gè)四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請說明理由.

(2)當(dāng)四面體ABCD的體積最大時(shí),求二面角ACDB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)

(1)討論函數(shù)單調(diào)性;

(2)當(dāng)時(shí),成立,求實(shí)數(shù)取值范圍;

(3)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:

(2)當(dāng)時(shí),求函數(shù)的最小值;

(3)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次購物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒有將;某顧客從此10張券中任取2張,求:

1)該顧客中獎(jiǎng)的概率;

2)該顧客獲得的獎(jiǎng)品總價(jià)值(元)的概率分布列.

查看答案和解析>>

同步練習(xí)冊答案