【題目】已知函數(shù)為常數(shù),=2.71828……是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

1)求的值;

2)求的單調(diào)區(qū)間;

3)設(shè),其中的導(dǎo)函數(shù).證明:對任意>0,

【答案】(1);(2)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(3)證明見解析.

【解析】

試題分析:(1)求出函數(shù)的導(dǎo)函數(shù),函數(shù)在點(diǎn)處的切線與軸平行,說明,則可得;(2)求出函數(shù)的定義域,然后讓導(dǎo)數(shù)等于,求出極值點(diǎn),借助于導(dǎo)函數(shù)在各區(qū)間內(nèi)的符號求函數(shù)的單調(diào)區(qū)間;(3),分別研究的單調(diào)性,可得函數(shù)的范圍,即可證明結(jié)論.

試題解析:(1)由,得,由于曲線處的切線與軸平行,所以,因此

2由(1)得,令 當(dāng)時, ;當(dāng)時,.又,所以時,;

時,,因此的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

3)證明因為,所以,.因此對任意等價于.

由(2)知

所以,

因此當(dāng)時,0, 單調(diào)遞增;當(dāng)時, 0, 單調(diào)遞減.

所以的最大值為 . 設(shè),

因為,所以0, 單調(diào)遞增, ,

時,,1.所以,

因此對任意, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(2,2),函數(shù)g(x)f(x1)f(32x)

(1)求函數(shù)g(x)的定義域

(2)f(x)是奇函數(shù),且在定義域上單調(diào)遞減求不等式g(x)0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合

(1) 求實(shí)數(shù)的范圍;

(2) 求實(shí)數(shù)的范圍;

(3) 求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖,在多面體中,平面,,且是邊長為2的等邊三角形,,與平面所成角的正弦值為.

(1)若是線段的中點(diǎn),證明:;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yx有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0, ]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)已知f(x)=,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;

(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5名男生4名女生站成一排,求滿足下列條件的排法:

(1)女生都不相鄰有多少種排法?

(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?

(3)男甲不在首位,男乙不在末位,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正整數(shù), , 是等腰三角形的三邊長,并且,這樣的三角形有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) .

(1)若,寫出函數(shù)的單調(diào)增區(qū)間和減區(qū)間;

2)若,求函數(shù)的最大值和最小值;

(3)若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,三條邊所對的角分別為A、B,C,向量=(),=(),且滿足=

(1)求角C的大小;

(2)若sinA,sinC,sinB成等比數(shù)列,且 =﹣8,求邊的值并求△ABC外接圓的面積.

查看答案和解析>>

同步練習(xí)冊答案