9.已知函數(shù)f(x)=ax3+bx+12在點(diǎn)x=2處取得極值-4.
(1)求a,b的值
(2)求f(x)在區(qū)間[-3,3]上的最大值與最小值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a,b的方程,解出即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可.

解答 解:(1)f′(x)=3ax2+b,
∵函數(shù)f(x)=ax3+bx+12在點(diǎn)x=2處取得極值-4,
∴$\left\{\begin{array}{l}{f(2)=-4}\\{f′(2)=0}\end{array}\right.$即$\left\{\begin{array}{l}{4a+b+8=0}\\{12a+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-12}\end{array}\right.$;
(2)由(1)得:f(x)=x3-12x+12,
f′(x)=3x2-12=3(x+2)(x-2),
令f′(x)>0,解得:x>2或x<-2,
令f′(x)<0,解得:-2<x<2,
∴f(x)在[-3,-2)遞增,在(-2,2)遞減,在(2,3]遞增,
∴f(x)min=f(-3)=-21,f(x)max=f(-2)=28.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在等差數(shù)列{an}中,a1=1,a4=7,則{an}的前4項(xiàng)和S4=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$,則z=-x+2y的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=$\frac{π}{3}$,O為△ABC的內(nèi)心,則$\overrightarrow{OA}$$•\overrightarrow{AB}$的值為$\sqrt{3}-3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求證:當(dāng)x>0時(shí),1-$\frac{1}{x}$≤lnx≤x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=x3-3x2+5在區(qū)間$[{1,\frac{5}{2}}]$上的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a是常數(shù).
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿(mǎn)足p(x)<q(x),那么就稱(chēng)q(x)為p(x)在D上的“線(xiàn)上函數(shù)”.證明:當(dāng)a<1時(shí),g(x)為f(x)在(0,+∞)上的“線(xiàn)上函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=x3+$\frac{3}{x}$在(0,+∞)上的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.關(guān)于y=3sin(2x-$\frac{π}{4}$)有以下命題:
①f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x-$\frac{π}{4}$);
③圖象關(guān)于x=-$\frac{π}{8}$對(duì)稱(chēng);④圖象關(guān)于點(diǎn)(-$\frac{π}{8}$,0)對(duì)稱(chēng).
其中正確的是③.

查看答案和解析>>

同步練習(xí)冊(cè)答案