18.函數(shù)f(x)=x3+$\frac{3}{x}$在(0,+∞)上的最小值是4.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:f′(x)=3x2-$\frac{3}{{x}^{2}}$=$\frac{{3x}^{4}-3}{{x}^{2}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,
∴f(x)在(0,1)遞減,在(1,+∞)遞增,
∴f(x)min=f(1)=4,
故答案為:4.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.等比數(shù)列{an}的前n和為Sn,已知S3=a2+10a1,a5=9,則a1=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax3+bx+12在點(diǎn)x=2處取得極值-4.
(1)求a,b的值
(2)求f(x)在區(qū)間[-3,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=ex-x(e為自然對(duì)數(shù)的底數(shù))在區(qū)間[0,1]上的最大值是( 。
A.1+$\frac{1}{e}$B.1C.e+1D.e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對(duì)所有的b∈(-∞,0],x∈(e,e2]都成立,則a的取值范圍是( 。
A.[e,+∞)B.$[\frac{e^2}{2},+∞)$C.$[\frac{e^2}{2},{e^2})$D.[e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列各命題中正確的是(  )
①若命題“p或q”為真命題,則命題“p”和命題“q”均為真命題;
②命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③“x=4”是“x2-3x-4=0”的充分不必要條件;
④命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0且n≠0”.
A.②③B.①②③C.①②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)N是棱AB中點(diǎn),求直線(xiàn)CN與平面MAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.對(duì)一批底部周長(zhǎng)屬于[80,130](單位:cm)的樹(shù)木進(jìn)行研究,從中隨機(jī)抽出200株樹(shù)木并測(cè)出其底部周長(zhǎng),得到頻率分布直方圖如圖所示,由此估計(jì),這批樹(shù)木的底部周長(zhǎng)的眾數(shù)是105cm,中位數(shù)是$\frac{310}{3}$cm,平均數(shù)是103.5cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若對(duì)任意正實(shí)數(shù)a,不等式x2≤1+a恒成立,則實(shí)數(shù)x的最小值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案