A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由已知及正弦定理可解得sinC,利用同角三角函數(shù)基本關(guān)系式可求cosC,進(jìn)而利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)故選可求sinB,即可求得$\frac{sinB}{sinC}$的值.
解答 解:在△ABC中,∵∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,
∴由正弦定理可得:sinA=$\sqrt{3}$sinC=$\frac{\sqrt{3}}{2}$,解得:sinC=$\frac{1}{2}$,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{\sqrt{3}}{2}$,
∴sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{3}}{2}$+(-$\frac{1}{2}$)×$\frac{1}{2}$=$\frac{1}{2}$,
∴$\frac{sinB}{sinC}$=$\frac{\frac{1}{2}}{\frac{1}{2}}$=1.
故選:A.
點(diǎn)評 本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,2) | C. | (-2,2) | D. | (2.$\frac{5}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2] | B. | [2,+∞) | C. | [-2,+∞) | D. | (-∞,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若|${\overrightarrow a}$|=|${\overrightarrow b}$|,則$\overrightarrow a$=$\overrightarrow b$ | B. | 若$\overrightarrow a$∥$\overrightarrow b$,則$\overrightarrow{a}$=$\overrightarrow$ | C. | 若$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$,則$\overrightarrow a$=$\overrightarrow c$ | D. | 若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com