7.設集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,則集合∁U(A∩B)的非空子集共有(  )
A.3個B.4個C.7個D.8個

分析 根據(jù)交集和補集含義寫出A∩B和A∪B,再根據(jù)補集的含義求出CU(A∩B),最后由真子集公式得出答案.

解答 解:∵集合A={4,5,7,9},B={3,4,7,8,9},
∴A∪B={3,4,5,7,8,9},
A∩B={4,7,9}
∴CU(A∩B)={3,5,8}
∴CU(A∩B)的真子集共有23-1=7
故選:C.

點評 此題考查了交集、并集、補集及其運算,以及子集與真子集,其中解題時要注意若一個集合的元素有n個,則此集合真子集的個數(shù)為(2n-1)個.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題中,真命題為( 。
A.?x0∈R,e${\;}^{{x}_{0}}$≤0
B.?x∈R,2x>x2
C.已知a,b為實數(shù),則a+b=0的充要條件是$\frac{a}$=-1
D.已知a,b為實數(shù),則a>1,b>1是ab>1的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設f(x)=max$\left\{{{x^2}-4x+3,\frac{3}{2}x+\frac{1}{2},3-x}\right\}$,其中max{a,b,c}表示三個數(shù)a,b,c中的最大值,則f(x)的最小值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.給出下列命題:
①半徑為2,圓心角的弧度數(shù)為$\frac{1}{2}$的扇形面積為$\frac{1}{2}$;
②在△ABC中,A<B的充要條件是sinA<sinB;
③在△ABC中,若AB=4,AC=2$\sqrt{6}$,B=$\frac{π}{3}$,則△ABC為鈍角三角形;
④函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點.
其中真命題的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,其短軸的一個端點與兩個焦點構成面積為$\sqrt{3}$的正三角形,過橢圓C的右焦點作斜率為k(k≠0)的直線l與橢圓C相交于A、B兩點,線段AB的中點為P.
(I)求橢圓C的標準方程;
(II)過點P垂直于AB的直線與x軸交于點D,試求$\frac{{|{DP}|}}{{|{AB}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在用反證法證明“?實數(shù)x,x2+x+1>0”時,其假設是$?{x_0}∈R,x_0^2+{x_0}+1≤0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=-$\sqrt{3}$sin2x+sinxcosx.
(1)求f($\frac{25π}{6}$)的值
(2)求函數(shù)f(x)的最小正周期及在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)f(x)=x2+(a-1)x+2在(-∞,4]上是單調遞減的,則實數(shù)a的取值范圍為{a|a≤-7}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.拋擲一枚均勻的硬幣4次,正面不連續(xù)出現(xiàn)的概率是( 。
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案