分析 ①,利用扇形的面積公式計(jì)算,
②,在△ABC中,A<B⇒a<b⇒2RsinA<2RsinB⇒sinA<sinB,反之亦然;
③,在△ABC中,若AB=4,AC=2$\sqrt{6}$,B=$\frac{π}{3}$,由正弦定理得△ABC為銳角三角形;
④,函數(shù)f(x)=lnx-2+x滿足f(1)•f(e)<0,在區(qū)間(1,e)上存在零點(diǎn).
解答 解:對于①,半徑為2,圓心角的弧度數(shù)為$\frac{1}{2}$,由扇形的面積公式得:S=$\frac{1}{2}$αR2=$\frac{1}{2}$×$\frac{1}{2}$×4=1,故不正確;
對于 ②,在△ABC中,A<B⇒a<b⇒⇒2RsinA<2RsinB⇒sinA<sinB,反之亦然,故正確;
對于③,在△ABC中,若AB=4,AC=2$\sqrt{6}$,B=$\frac{π}{3}$,由正弦定理得△ABC為銳角三角形,故錯(cuò);
對于④,函數(shù)f(x)=lnx-2+x滿足f(1)•f(e)<0,在區(qū)間(1,e)上存在零點(diǎn),故正確.
故答案為:②④
點(diǎn)評(píng) 本題考查了命題真假的判定,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)<f(b)<f(c) | B. | f(a)<f(c)<f(b) | C. | f(b)<f(c)<f(a) | D. | f(b)<f(a)<f(c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個(gè) | B. | 4個(gè) | C. | 7個(gè) | D. | 8個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{5}}{3}$ | B. | -$\frac{1}{9}$ | C. | $\frac{1}{9}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com