已知a+b+c=0,abc=2,求證:a,b,c中至少有一個不小于2.
考點:反證法與放縮法
專題:證明題,不等式的解法及應(yīng)用
分析:由于a+b+c=0,則a,b,c至少有一個為正數(shù),不妨設(shè)c>0,則a+b=-c,ab=
2
c
,將a,b看作是x2+cx+
2
c
=0的兩根,再由判別式大于等于0,即可得證.
解答: 證明:由于a+b+c=0,
則a,b,c至少有一個為正數(shù),
不妨設(shè)c>0,則a+b=-c,
ab=
2
c
,
將a,b看作是x2+cx+
2
c
=0的兩根,
則判別式△=c2-
8
c
≥0,
即有c≥2.
則a,b,c中至少有一個不小于2.
點評:本題考查不等式的證明,考查判別式法證明不等式的方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=(2-3i),z2=
1+i
i
求:
(Ⅰ)z1•z2; 
(Ⅱ)
z1
z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x•2x
4x+1
的最大值是M,最小值是m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為2,P,Q,R分別是棱BC,CD,DD1的中點.下列命題:
①過A1C1且與CD1平行的平面有且只有一個;
②平面PQR截正方體所得截面圖形是等腰梯形;
③AC1與QR所成的角為60°;
④線段MN與GH分別在棱A1B1和CC1上運動,則三棱錐M-NGH體積是定值;
⑤線段MN是該正方體內(nèi)切球的一條直徑,點O在正方體表面上運動,則
OM
ON
的最大值是2.
其中真命題的序號是
 
 (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系.已知直線l的極坐標方程為θ=
π
4
(ρ∈R),曲線C的參數(shù)方程為
x=1+2cosθ
y=2sinθ
(θ為參數(shù)).若直線l與曲線C交于A,B兩點,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,曲線y=x2-6x+5與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A、B兩點,且|AB|=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)ax2+bx+c(x∈R,a>0)的零點為x1,x2(x1<x2),函數(shù)f(x)的最小值為y0,且y0∈[x1,x2],則函數(shù)y=f[f(x)]的零點個數(shù)是(  )
A、2或3B、3或4C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,a,b是異面直線,畫出平面α,使a?α,且b∥α,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的三個頂點的坐標為A(0,0),B(5,0),C(2,-4).
(Ⅰ)在△ABC中,求邊AC中線所在直線方程;
(Ⅱ)求的頂點D的坐標及對角線BD的長度;
(Ⅲ)求平行四邊形ABCD的面積及邊AD所在的直線方程.

查看答案和解析>>

同步練習(xí)冊答案