【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)時(shí),若存在實(shí)數(shù),使得,求的最小值.
【答案】(1)見解析;(2).
【解析】
(1)先求得函數(shù)的導(dǎo)函數(shù).令,分離參數(shù)后構(gòu)造函數(shù),并求得,通過判斷在各區(qū)間內(nèi)的符號(hào),判斷的單調(diào)性及的取值情況.即可根據(jù)的取值情況,判斷極值點(diǎn)的個(gè)數(shù).
(2)將代入,并令,即可用表示出與,即可表示出.構(gòu)造函數(shù),并求得,結(jié)合的符號(hào)即可判斷的單調(diào)性,進(jìn)而求得的最小值.
(1)由題可知,
令,得,
記,則
當(dāng)時(shí),;時(shí),;時(shí),,
∴在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,
又
時(shí),;
時(shí),;
時(shí),,
∴當(dāng)時(shí),函數(shù)有2個(gè)極值點(diǎn);
當(dāng)時(shí),函數(shù)無極值點(diǎn);
當(dāng)時(shí),函數(shù)有1個(gè)極值點(diǎn);
(2)當(dāng)時(shí),設(shè),
則,
∵,∴,即,
故,,
∴,,即.
令,
則,
∵與在均單調(diào)遞增,
∴在均單調(diào)遞增,且,
∴當(dāng)時(shí),,當(dāng)時(shí),,
∴在上單調(diào)遞減,在上單調(diào)遞增,
∴當(dāng)時(shí),取最小值,此時(shí),
即的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:(為參數(shù)),曲線:(為參數(shù)),以O為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,已知曲線的極坐標(biāo)方程為,記曲線與的交點(diǎn)為.
(1)求點(diǎn)的極坐標(biāo);
(2)設(shè)曲線與相交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn),給出命題:①;②若,則存在,使得;③與所有極值之和一定小于0;④若,且是曲線的一條切線,則的取值范圍是.則以上命題正確序號(hào)是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使成立,則稱為的不動(dòng)點(diǎn).
(1)當(dāng),時(shí),求的不動(dòng)點(diǎn);
(2)若對(duì)于任何實(shí)數(shù),函數(shù)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若的圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線是線段的垂直平分線,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界排球比賽一般實(shí)行“五局三勝制”,在2019年第13屆世界女排俱樂部錦標(biāo)賽(俗稱世俱杯)中,中國(guó)女排和某國(guó)女排相遇,根據(jù)歷年數(shù)據(jù)統(tǒng)計(jì)可知,在中國(guó)女排和該國(guó)女排的比賽中,每場(chǎng)比賽中國(guó)女排獲勝的概率為,該國(guó)女排獲勝的概率為,現(xiàn)中國(guó)女排在先勝一局的情況下獲勝的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求曲線與的交點(diǎn)坐標(biāo);
(2)過曲線上任一點(diǎn)作與夾角為30°的直線,交于點(diǎn),且的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知A,B分別為橢圓C:(a>b>0)的左右頂點(diǎn),P為橢圓C上異于A,B的任意一點(diǎn),O為坐標(biāo)原點(diǎn),=﹣4,△PAB的面積的最大值為.
(1)求橢圓C的方程;
(2)若橢圓C上存在兩點(diǎn)M,N,分別滿足OM∥PA,ON∥PB,求|OM||ON|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線l與橢圓C交于P,Q兩點(diǎn),且點(diǎn)M滿足.
(1)若點(diǎn),求直線的方程;
(2)若直線l過點(diǎn)且不與x軸重合,過點(diǎn)M作垂直于l的直線與y軸交于點(diǎn),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com