1.為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
是否需要志愿者
性別
需要4030
不需要160270
P(K2≥k)0.050.010.001
k3.8416.63510.828
附:K2的觀測(cè)值$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)在犯錯(cuò)誤的概率不超過0.01的前提下是否可認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

分析 (1)先計(jì)算出該地區(qū)的老年中,需要志愿者提供幫助的老年人總數(shù),然后將其與樣本總數(shù)之比即為所占比例;
(2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機(jī)變量的觀測(cè)值公式,得到觀測(cè)值的結(jié)果,把觀測(cè)值的結(jié)果與臨界值進(jìn)行比較,得出該地區(qū)的老年人需要志愿者提供幫助與性別有關(guān)系的程度.

解答 解:(1)∵男性40位需要志愿者,女性30為需要志愿者,
∴該地區(qū)的老年中,需要志愿者提供幫助的老年人40+30=70位,
∴估計(jì)該地區(qū)的老年中,需要志愿者提供幫助的老年人的比例為$\frac{70}{500}$=14%;
(2)解:根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機(jī)變量的觀測(cè)值公式,
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{500(40×270-30×160)^{2}}{200×300×70×430}$=9.967>6.635,
∵P(K2>6.635)=0.010,
∴有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者的幫助與性別有關(guān).

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),EF與BD交于點(diǎn)G,M為棱BB1上一點(diǎn).
(1)證明:EF∥平面 A1C1D;
(2)當(dāng)B1M:MB的值為多少時(shí),D1M⊥平面 EFB1,證明之;
(3)求點(diǎn)D到平面 EFB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2alnx+(a+1)x2+1.
(Ⅰ)當(dāng)$a=-\frac{1}{2}$時(shí),求函數(shù)f(x)的極值;
(Ⅱ)如果對(duì)任意x1>x2>0,總有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>{x_1}+{x_2}+4$,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:$ln(n+1)>\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n>1,n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a>0,函數(shù)$f(x)=-2asin({2x+\frac{π}{6}})+2a+b$,且-5≤f(x)≤3.
(1)求常數(shù)a,b的值;
(2)設(shè)$g(x)=f({x+\frac{π}{2}})$且lgg(x)>0,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,過圓x2+y2=$\frac{12}{7}$上一點(diǎn)($\frac{6}{7}$,$\frac{4\sqrt{3}}{7}$)作圓的切線,切線l恰好經(jīng)過橢圓的右頂點(diǎn)和上頂點(diǎn),A為橢圓上異于長(zhǎng)軸頂點(diǎn)的任意一點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(4,0),直線AP與橢圓的另一個(gè)交點(diǎn)為B,直線BF與橢圓的另一個(gè)交點(diǎn)為C,設(shè)直線AP的斜率為k1,直線BF的斜率為k2,求$\overrightarrow{PA}$•$\overrightarrow{FC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=$\sqrt{\frac{2-x}{x-1}}$的定義域?yàn)榧螦,關(guān)于x的不等式${3^{2ax}}<{3^{a+x}}(a>\frac{1}{2})$的解集為B,求使A∩B=A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.對(duì)于函數(shù)f(x)=x3-3x2,給出命題:
①f(x)是增函數(shù),無極值;
②f(x)是減函數(shù),無極值;
③f(x)的遞增區(qū)間為(-∞,0),(2,+∞),遞減區(qū)間為(0,2);
④f(0)=0是極大值,f(2)=-4是極小值.
其中正確的命題有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+x2-xlna(a>0且a≠1);
(1)求證:函數(shù)f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
(2)當(dāng)a>1時(shí),若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b∈R,a2+b2=4,求3a+2b的取值范圍為(  )
A.(-∞,4]B.$[-2\sqrt{13},2\sqrt{13}]$C.[4,+∞)D.(-∞,2$\sqrt{13}$]∪[2$\sqrt{13}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案