分析 (1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),可求函數(shù)f(x)單調(diào)區(qū)間;
(2)f(x)的最大值減去f(x)的最小值大于或等于e-1,由單調(diào)性知,f(x)的最大值是f(1)或f(-1),最小值f(0)=1,由f(1)-f(-1)的單調(diào)性,判斷f(1)與f(-1)的大小關(guān)系,再由f(x)的最大值減去最小值f(0)大于或等于e-1求出a的取值范圍.
解答 解:(1)證明:函數(shù)f(x)的定義域為R,f'(x)=axlna+2x-lna=2x+(ax-1)lna.
令h(x)=f'(x)=2x+(ax-1)lna,h'(x)=2+axln2a,
當(dāng)a>0,a≠1時,h'(x)>0,所以h(x)在R上是增函數(shù),
又h(0)=f'(0)=0,所以,f'(x)>0的解集為(0,+∞),f'(x)<0的解集為(-∞,0),
故函數(shù)f(x)的單調(diào)增區(qū)間為(0,+∞),單調(diào)減區(qū)間為(-∞,0);
(2)因為存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1成立,
而當(dāng)x∈[-1,1]時|f(x1)-f(x2)|≤f(x)max-f(x)min,
所以只要f(x)max-f(x)min≥e-1,
又因為x,f'(x),f(x)的變化情況如下表所示:
x | (-∞,0) | 0 | (0,+∞) |
f'(x) | - | 0 | + |
f(x) | 減函數(shù) | 極小值 | 增函數(shù) |
點(diǎn)評 本題考查了基本函數(shù)導(dǎo)數(shù)公式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{9}-\frac{y^2}{9}=1$ | B. | $\frac{y^2}{9}-\frac{x^2}{9}=1$ | C. | $\frac{y^2}{18}-\frac{x^2}{18}=1$ | D. | $\frac{x^2}{18}-\frac{y^2}{18}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否需要志愿者 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2ab-1-a2b2≥0 | B. | (a2-1)(b2-1)≥0 | ||
C. | $\frac{(a+b)2}{2}$-1-a2b2≥0 | D. | a2+b2-1-$\frac{{a}^{4}+^{4}}{2}$≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com