15.已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時,f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$].

分析 根據(jù)偶函數(shù)的性質(zhì)求得a的值,再根據(jù)當(dāng)x>0時,f(x)單調(diào)遞增,可得函數(shù)f(x)在(-∞,0)上單調(diào)遞減,故由不等式可得$\left\{\begin{array}{l}{x-1<-a或x-1>a}\\{-\frac{2}{3}≤x-1≤\frac{2}{3}}\end{array}\right.$,由此求得x的范圍.

解答 解:∵函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),
∴a-1+2a=0,求得a=$\frac{1}{3}$,故函數(shù)的定義域?yàn)閇-$\frac{2}{3}$,$\frac{2}{3}$].
∵當(dāng)x>0時,f(x)單調(diào)遞增,故函數(shù)f(x)在(-∞,0)上單調(diào)遞減.
由關(guān)于x的不等式f(x-1)>f(a),可得$\left\{\begin{array}{l}{x-1<-a或x-1>a}\\{-\frac{2}{3}≤x-1≤\frac{2}{3}}\end{array}\right.$,求得$\frac{1}{3}$≤x<$\frac{2}{3}$,或$\frac{4}{3}$<x≤$\frac{5}{3}$,
故不等式f(x-1)>f(a)的解集為[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$],
故答案為:[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$].

點(diǎn)評 本題主要考查函數(shù)的定義域,函數(shù)的奇偶性和單調(diào)性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1-2x)5(1+3x)4的展開式中含x項(xiàng)的系數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=$\sqrt{\frac{2-x}{x-1}}$的定義域?yàn)榧螦,關(guān)于x的不等式${3^{2ax}}<{3^{a+x}}(a>\frac{1}{2})$的解集為B,求使A∩B=A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某地擬模仿圖(1)建造一座大型體育館,其設(shè)計(jì)方案側(cè)面的外輪廓線如圖(2)所示:曲線AB是以點(diǎn)E為圓心的圓的一部分,其中E(0,t)曲線BC是拋物線y=-ax2+30(a>0)的一部分;CD⊥AD,且CD恰好等于圓E的半徑.
(1)若要求CD=20米,AD=(10$\sqrt{3}$+30)米,求t與a值;
(2)當(dāng)0<t≤10時,若要求體育館側(cè)面的最大寬度DF不超過45米,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+x2-xlna(a>0且a≠1);
(1)求證:函數(shù)f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
(2)當(dāng)a>1時,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.先觀察不等式(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$)(b${\;}_{1}^{2}$+b${\;}_{2}^{2}$)≥(a1b1+a2b22(a1、a2、b1、b2∈R)的證明過程:設(shè)平面向量$\overrightarrow{α}$=(a1,b1),$\overrightarrow{β}$=(a2,b2),則|$\overrightarrow{α}$|=$\sqrt{{a}_{1}^{2}+_{1}^{2}}$,|$\overrightarrow{β}$|=$\sqrt{{a}_{2}^{2}+_{2}^{2}}$,$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2
∵|$\overrightarrow{α}$•$\overrightarrow{β}$|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2|≤$\sqrt{{a}_{1}^{2}{+b}_{1}^{2}}$•$\sqrt{{a}_{2}^{2}+_{2}^{2}}$,
∴(a1a2+b1b22≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$),
再類比證明:(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=x3-3x在[-1,2]上的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知(3x-1)7=a0x7+a1x6+…+a6x+a7,則a0+a2+a4+a6=8256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=-x3+x2+bx+c,當(dāng)x=$\frac{2}{3}$時,函數(shù)f(x)有極大值$\frac{4}{27}$.
(Ⅰ)求實(shí)數(shù)b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案