20.先觀察不等式(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$)(b${\;}_{1}^{2}$+b${\;}_{2}^{2}$)≥(a1b1+a2b22(a1、a2、b1、b2∈R)的證明過程:設(shè)平面向量$\overrightarrow{α}$=(a1,b1),$\overrightarrow{β}$=(a2,b2),則|$\overrightarrow{α}$|=$\sqrt{{a}_{1}^{2}+_{1}^{2}}$,|$\overrightarrow{β}$|=$\sqrt{{a}_{2}^{2}+_{2}^{2}}$,$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2
∵|$\overrightarrow{α}$•$\overrightarrow{β}$|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2|≤$\sqrt{{a}_{1}^{2}{+b}_{1}^{2}}$•$\sqrt{{a}_{2}^{2}+_{2}^{2}}$,
∴(a1a2+b1b22≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$),
再類比證明:(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c22

分析 利用類比的方法,結(jié)合向量的運(yùn)算,即可證明結(jié)論.

解答 解:設(shè)空間向量$\overrightarrow{α}$=(a1,b1,c1),$\overrightarrow{β}$=(a2,b2,c2),則|$\overrightarrow{α}$|2=a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$,|$\overrightarrow{β}$|2=a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$,
$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2+c1c2,
∵|$\overrightarrow{α}$•β|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2+c1c2|2≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)
∴(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c22

點(diǎn)評 本題是中檔題,考查不等式的證明與應(yīng)用,考查的閱讀能力,知識的應(yīng)用能力,邏輯推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.畫出已知函數(shù)y=$\left\{\begin{array}{l}{2x(x>0)}\\{5x-1(x≤0)}\end{array}\right.$輸入x的值,求y的值程序框圖,并寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列選項(xiàng)中敘述錯(cuò)誤的是( 。
A.命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”
B.命題“若x=0,則x2-x=0”逆否命題為真命題
C.若命題P:?n∈N,n2>2n,則¬P:?n∈N,n2≤2n
D.若“p∧q”為假命題,則“p∨q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=x3-x2-x的單調(diào)增區(qū)間為(-∞,$\frac{1}{3}$),(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A,B,C的對邊依次為a,b,c,若a=3,$b=\sqrt{3}$,$A=\frac{π}{3}$,則角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,已知A(-1,2),B(2,1),C(1,0).
(Ⅰ)判定三角形ABC形狀;
(Ⅱ)求過點(diǎn)A且在x軸和在y軸上截距互為倒數(shù)的直線方程;
(Ⅲ)已知l是過點(diǎn)A的直線,點(diǎn)C到直線l的距離為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在極坐標(biāo)系下,點(diǎn)$A(2,\frac{3π}{4})$到直線l:ρcos(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$的距離為(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$2-\frac{{\sqrt{2}}}{2}$D.$2+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知α∈($\frac{π}{2}$,π),cosα=-$\frac{3}{5}$,則 tanα=-$\frac{4}{3}$;tan(α+$\frac{π}{4}$)-$\frac{1}{7}$.

查看答案和解析>>

同步練習(xí)冊答案