5.在△ABC中,內(nèi)角A,B,C的對(duì)邊依次為a,b,c,若a=3,$b=\sqrt{3}$,$A=\frac{π}{3}$,則角B=$\frac{π}{6}$.

分析 由已知及正弦定理可求sinB=$\frac{1}{2}$,結(jié)合大邊對(duì)大角可得B∈(0,$\frac{π}{3}$),利用特殊角的三角函數(shù)值即可得解B的值.

解答 解:在△ABC中,∵a=3,$b=\sqrt{3}$,$A=\frac{π}{3}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×\frac{\sqrt{3}}{2}}{3}$=$\frac{1}{2}$,
由a>b,得B<A,
∴B∈(0,$\frac{π}{3}$),可得:B=$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點(diǎn)評(píng) 本題主要考查了正弦定理,大邊對(duì)大角,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)向量$\overrightarrow{a}$與$\overrightarrow$不共線,若$\overrightarrow{AB}$=3$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{BC}$=$\overrightarrow{a}$+m$\overrightarrow$,$\overrightarrow{CD}$=2$\overrightarrow{a}$-$\overrightarrow$,且A,C,D三點(diǎn)共線,則m=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.不等式$|{\begin{array}{l}1&0&0\\{lgx}&{\frac{1}{x-1}}&{-2}\\ 1&1&x\end{array}}|≥0$的解集為$(0,\frac{2}{3}]∪(1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.用反證法證明“$\sqrt{3},\sqrt{5},\sqrt{7}$不可能成等差數(shù)列”時(shí),第一步應(yīng)假設(shè):$\sqrt{3},\sqrt{5},\sqrt{7}$成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.先觀察不等式(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$)(b${\;}_{1}^{2}$+b${\;}_{2}^{2}$)≥(a1b1+a2b22(a1、a2、b1、b2∈R)的證明過(guò)程:設(shè)平面向量$\overrightarrow{α}$=(a1,b1),$\overrightarrow{β}$=(a2,b2),則|$\overrightarrow{α}$|=$\sqrt{{a}_{1}^{2}+_{1}^{2}}$,|$\overrightarrow{β}$|=$\sqrt{{a}_{2}^{2}+_{2}^{2}}$,$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2
∵|$\overrightarrow{α}$•$\overrightarrow{β}$|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2|≤$\sqrt{{a}_{1}^{2}{+b}_{1}^{2}}$•$\sqrt{{a}_{2}^{2}+_{2}^{2}}$,
∴(a1a2+b1b22≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$),
再類比證明:(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知M(-2,-1),N(a,3),且|MN|=5,則實(shí)數(shù)a=1或-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.點(diǎn)P(x0,y0)是曲線y=3lnx+x+k(k∈R)圖象上一個(gè)定點(diǎn),過(guò)點(diǎn)P的切線方程為4x-y-1=0,則實(shí)數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.不等式1≤|x+2|≤5的解集為[-7,-3]∪[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知A(-1,2)為拋物線C:y=2x2上的點(diǎn),直線l1過(guò)點(diǎn)A,且與拋物線C相切.直線l2:x=a(a>-1)交拋物線C于點(diǎn)B,交直線l1于點(diǎn)D.設(shè)設(shè)由拋物線C、直線l1、l2所圍成的圖形的面積為S1
(1)求直線l1的方程;
(2)求S1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案