12.已知等比數(shù)列{an}為遞增數(shù)列,且$a_5^2={a_{10}}$,2(a1+a3)=5a2
(1)求數(shù)列{an}的通項公式;
(2)令${b_n}={a_n}+{(-1)^n}$,求數(shù)列{bn}的前n項和Sn

分析 (1)利用等比數(shù)列的通項公式即可得出;
(2)對n分類討論,利用等比數(shù)列的求和公式即可得出.

解答 解:(1)設(shè){an}的首項為a1,公比為q,
∴${({a_1}{q^4})^2}={a_1}{q^9}$,解得a1=q.
又∵2(an+an+2)=5an+1,∴$2({a_n}+{a_n}{q^2})=5{a_n}q$,
則2(1+q2)=5q,2q2-5q+2=0,解得$q=\frac{1}{2}$(舍)或q=2.
∴${a_n}=2×{2^{n-1}}={2^n}$.
(2)∵${c_n}={(-1)^n}+{2^n}$,n為偶數(shù)時,${S_n}=(-1+1-1+…-1+1)+\frac{{2(1-{2^n})}}{1-2}=-2+{2^{n+1}}$;
n為奇數(shù)時,${S_n}=(-1+1+…1-1)+\frac{{2(1-{2^n})}}{1-2}=-1-2+{2^{n+1}}={2^{n+1}}-3$.
∴Sn=$\left\{\begin{array}{l}{{2}^{n+1}-2,n為偶數(shù)}\\{{2}^{n+1}-3,n為奇數(shù)}\end{array}\right.$.

點評 本題考查了等比數(shù)列的通項公式、求和公式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{ax-1}{{{x^2}+2}}$(x∈R),當(dāng)x=2時f(x)取得極值.
(1)求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)-2m+1=0在x∈[-2,1]時有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ex-1-ax(a>1)在[0,a]上的最小值為f(x0),且x0<2,則實數(shù)a的取值范圍是( 。
A.(1,2)B.(1,e)C.(2,e)D.($\frac{e}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若直線l過點(2,3),且與圓(x-1)2+(y+2)2=1相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知p:關(guān)于x的不等式x2+2ax-a≤0有解,q:a>0或a<-1,則p是q的必要不充分條件.(空格處請?zhí)顚憽俺浞植槐匾薄氨匾怀浞帧薄俺湟被颉凹炔怀浞忠膊槐匾保?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于兩個圖形F1,F(xiàn)2,我們將圖形F1上的任意一點與圖形F2上的任意一點間的距離中的最小值,叫作圖形F1與圖形F2的距離.若兩個函數(shù)圖象的距離小于1,稱這兩個函數(shù)互為“可及函數(shù)”.給出下列幾對函數(shù),其中互為“可及函數(shù)”的是(  )
A.f(x)=cosx,g(x)=2B.$f(x)={log_2}({{x^2}-2x+5}),g(x)=sin\frac{π}{2}x$
C.$f(x)=\sqrt{4-{x^2}},g(x)=\frac{3}{4}x+\frac{15}{4}$D.$f(x)=x+\frac{2}{x},g(x)=lnx+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某高!敖y(tǒng)計初步“課程教師隨機調(diào)查了選該科的一些學(xué)生情況,共調(diào)查了50人,其中女生27人,男生23人.女生中有20人選統(tǒng)計專業(yè),另外7人選非統(tǒng)計專業(yè),男生中有10人選統(tǒng)計專業(yè),另外13人選非統(tǒng)計專業(yè).
(1)根據(jù)以上數(shù)據(jù)完成下列的2×2聯(lián)列表:
  專業(yè)
性別
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)合計
合計
(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.05的情況下,認(rèn)為主修統(tǒng)計專業(yè)與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=\frac{e^x}{x}$的單調(diào)增區(qū)間是( 。
A.(-∞,1)B.(1,+∞)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案