【題目】已知,函數(shù),,若函數(shù)有4個零點,則實數(shù)的取值范圍是______.
【答案】
【解析】
畫出函數(shù)的圖像,對分成,等種情況,研究零點個數(shù),由此求得的取值范圍.
令,畫出函數(shù)的圖像如下圖所示,由圖可知,
(1)當(dāng)或時,存在唯一,使,而至多有兩個根,不符合題意.
(2)當(dāng)時,由解得,由化簡得,其判別式為正數(shù),有兩個不相等的實數(shù)根;由化簡得,其判別式為正數(shù),有兩個不相等的實數(shù)根.由于上述四個實數(shù)根互不相等,故時,符合題意.
(3)當(dāng)時,由解得,由化簡得,其判別式為負(fù)數(shù),沒有實數(shù)根;由化簡得,其判別式為正數(shù),有兩個不相等的實數(shù)根.故當(dāng)時,不符合題意.
(4)當(dāng)時,由,根據(jù)圖像可知有三個解,不妨設(shè).
即
即.
i)當(dāng)時,,故①②③三個方程都分別有個解,共有個解,不符合題意.
ii)當(dāng)時,,①有個解,②③分別有個解,共有個解,不符合題意.
iii)當(dāng)時,,①無解,②③分別有個解,共有個解,符合題意.
iv)當(dāng)時,,①無解,②有個解,③有兩個解,共有個解,不符合題意.
v)當(dāng)時,,①無解,②無解,③至多有個解,不符合題意.
綜上所述,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求和的直角坐標(biāo)方程;
(2)已知直線與軸交于點,且與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,記
(1)證明:有且僅有一個零點;
(2)記的零點為,,若在內(nèi)有兩個不等實根,判斷與的大小,并給出對應(yīng)的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線,的直角坐標(biāo)方程;
(2)設(shè)曲線,交于點,,已知點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)是上的增函數(shù).
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若滿足為假命題且為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有9只球,其中標(biāo)有數(shù)字1,2,3,4的小球各2個,標(biāo)數(shù)字5的小球有1個.從袋中任取3個小球,每個小球被取出的可能性都相等,用表示取出的3個小球上的最大數(shù)字.
(1)求取出的3個小球上的數(shù)字互不相同的概率;
(2)求隨機(jī)變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐A-BCDE中,平面BCDE,底面BCDE為直角梯形,、,,F為AC上一點,且.
(1)求證:平面ADE;
(2)求異面直線AB、DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,E,F分別為線段 的中點.
(1)求證:面;
(2)求證:面;
(3)在線段上是否存在一點G,使平面平面,證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com