已知F1、F2是橢圓+=1的兩焦點,經(jīng)點F2的的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于(  )
A.11                              B.10                                   C.9                                     D.16
A
由橢圓的定義可得|AF1|+|AF2|=2a=8|BF1|+|BF2|=2a=8,兩式相加后將|AB|=5=|AF2|+|BF2|代入,得|AF1|+|BF1|=11,故選A。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P與定點F的距離和它到定直線l:的距離之比是1 : 2.
(1)求點P的軌跡C方程;
(2)過點F的直線交曲線C于A, B兩點, A, B在l上的射影分別為M, N.
求證AN與BM的公共點在x軸上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)標準橢圓的兩焦點為,在橢圓上,且.  (1)求橢圓方程;(2)若N在橢圓上,O為原點,直線的方向向量為,若交橢圓于A、B兩點,且NA、NB軸圍成的三角形是等腰三角形(兩腰所在的直線是NA、NB),則稱N點為橢圓的特征點,求該橢圓的特征點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面內(nèi),已知點,是平面內(nèi)一動點,直線、斜率之積為.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作直線與軌跡交于兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線L交橢圓CAB兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點為,點在該橢圓上,且,則點軸的距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓+=1及點M(2,1),F1、F2分別是橢圓的左、右焦點,設(shè)A是橢圓上的動點,則|AM|+|AF2|的最大值是_________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線y=kx-1與橢圓+=1相切,則k、a之間的關(guān)系式為(    )
A.4a+4k2="1" B.4k2-a=1
C.a(chǎn)-4k2="1"D.a(chǎn)+4k2=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,焦點在y軸上的橢圓的標準方程是           

查看答案和解析>>

同步練習冊答案