已知集合A={2,3,4},B={1,2,3,4,5},寫出集合A∩B的所有子集,并指出其中的真子集.
考點:子集與真子集
專題:集合
分析:由交集運算求得A∩B,然后寫出其子集,并得到真子集.
解答: 解:∵A={2,3,4},B={1,2,3,4,5},
∴A∩B={2,3,4},
則集合A∩B的所有子集是:∅,{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}.
其中∅,{2},{3},{4},{2,3},{2,4},{3,4}為真子集.
點評:本題考查了交集及其運算,考查了子集與真子集的概念,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x5+x-3的零點的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是實數(shù),函數(shù)f(x)=ax2+2(a-1)x-2lnx.
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=g(x)在點P(x0,y0)處的切線方程為l:y=h(x),當(dāng)x≠x0時,若
g(x)-h(x)
x-x0
<0在D內(nèi)恒成立,則稱點P為函數(shù)y=g(x)的“平衡點”.當(dāng)a=1時,試問函數(shù)y=f(x)是否存在“平衡點”?若存在,請求出“平衡點”的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:cosα•sinβ=
1
2
[sin(α+β)-sin(α-β)].
    cosα•cosβ=
1
2
[cos(α+β)+cos(α-β)]
    sinα•sinβ=-
1
2
[cos(α+β)-cos(α-β)]
求證:sinθ-sinφ=2cos
θ+φ
2
sin
θ-φ
2

      cosθ+cosφ=2cos
θ+φ
2
cos
θ-φ
2

      cosθ-cosφ=-2sin
θ+φ
2
sin
θ-φ
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的方程為x2+y2-2x-3=0,求圓心M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且有(2c+b)cosA+acosB=0;
(1)求∠A的大。
(2)若a=4
3
,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2lgx=lg81,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),Sn為其前n項的和,且對于任意的n∈N*,都有4Sn=(an+1)2
(1)求a1,a2的值和數(shù)列{an}的通項公式;
(2)求數(shù)列bn=
1
anan+1
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2最小內(nèi)角的大小為30°,則雙曲線C的漸近線方程是( 。
A、
2
x±y=0
B、x±
2
y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

同步練習(xí)冊答案