在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且有(2c+b)cosA+acosB=0;
(1)求∠A的大;
(2)若a=4
3
,b+c=8,求△ABC的面積.
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:(1)由條件利用正弦定理可得2sinCcosA+sinBcosA+sinAcosB=0,求得cosA=-
1
2
,可得A=120°.
(2)由條件利用余弦定理求得bc=16,可得△ABC的面積
1
2
bc•sinA 的值.
解答: 解:(1)在△ABC中,(2c+b)cosA+acosB=0,由正弦定理可得2sinCcosA+sinBcosA+sinAcosB=0,
即2sinCcosA+sin(A+B)=0,即2sinCcosA+sinC=0,求得cosA=-
1
2
,∴A=120°.
(2)∵a=4
3
,b+c=8,則由余弦定理可得 a2=48=b2+c2-2bc•cosA=(b+c)2-bc=64-bc,
求得bc=16,故△ABC的面積為
1
2
bc•sinA=
1
2
•16•
3
2
=4
3
點(diǎn)評(píng):本題主要考查正弦定理、余弦定理、誘導(dǎo)公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,現(xiàn)有一塊半徑為2m,圓心角為90°的扇形鐵皮AOB,欲從其中裁剪出一塊內(nèi)接五邊形ONPQR,使點(diǎn)P在AB弧上,點(diǎn)M,N分別在半徑OA和OB上,四邊形PMON是矩形,點(diǎn)Q在弧AP上,R點(diǎn)在線段AM上,四邊形PQRM是直角梯形.現(xiàn)有如下裁剪方案:先使矩形PMON的面積達(dá)到最大,在此前提下,再使直角梯形PQRM的面積也達(dá)到最大:求出裁剪出的五邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)角∠A,∠B,∠C所對(duì)的邊分別為a,b,c,∠A=60°,∠B=75°,a=2
3
,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a2,a+2},B={3a-2,2a+1},若A=B,則實(shí)數(shù)a的值為( 。
A、2B、1C、-1或1D、1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={2,3,4},B={1,2,3,4,5},寫(xiě)出集合A∩B的所有子集,并指出其中的真子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
tanxx≥0
2xx<0
,則不等式f(x)<
3
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(3x-
2
x
4的展開(kāi)式中的常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+
1
x
),且f(x)在x=
1
2
處的切線方程為y=g(x).
(1)求y=g(x)的解析式;
(2)證明:當(dāng)x>0時(shí),恒有f(x)≥g(x);
(3)證明:若ai>0,且
n
i=1
ai=1,則(a1+
1
a1
)(a2+
1
a2
)…(an+
1
an
)≥(
n2+1
n
n(1≤i≤n,i,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面內(nèi)互不相等的非零向量
a
、
b
滿足|
a
|=1,
a
-
b
b
的夾角為150°,則
a
b
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案