【題目】已知橢圓經(jīng)過點,離心率為.

1)求橢圓的方程;

2)過點作兩條互相垂直的弦分別與橢圓交于點,求點到直線距離的最大值.

【答案】12

【解析】

1)由題意結(jié)合解出后,即可得解;

2)設(shè),當(dāng)直線的斜率存在時,設(shè)其方程為,代入橢圓方程得,,由化簡可得,進而可得直線方程為,由直線過定點即可得點到直線距離的最大值為;當(dāng)直線斜率不存在時,設(shè)其方程為,求出n后即可得點到直線的距離;即可得解.

1)由題意,得,結(jié)合,得,,

所以橢圓的方程為

2)當(dāng)直線的斜率存在時,設(shè)其方程為,

代入橢圓方程,整理得

,

設(shè),,則,

因為,所以,所以,

,

其中,

代入整理得,即,

當(dāng)時,直線過點,不合題意;

所以,此時滿足,

則直線的方程為,直線過定點,

所以當(dāng)時,

到直線的最大距離;

當(dāng)直線的斜率不存在時,設(shè)其方程為,由,,

代入可得,

結(jié)合可得(舍去),

當(dāng)時,點到直線的距離為,

綜上,點到直線的最大距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調(diào)查統(tǒng)計,通過數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時)之間存在如下關(guān)系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當(dāng)車流密度在時,車流速度是車流密度的一次函數(shù);車流密度一旦達到該路段交通完全癱瘓(車流速度為零).

1)求關(guān)于的函數(shù)

2)已知車流量(單位時間內(nèi)通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某便利店每天以每件5元的價格購進若干鮮奶,然后以每件10元價格出售,如果當(dāng)天賣不完,剩下的鮮奶作餐廚垃圾處理.便利店記錄了100天這種鮮奶的日需求量(單位:件)如表所示:

日需求量n(件)

140

150

160

170

180

190

200

頻數(shù)

10

20

16

16

15

12

11

100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

1)若便利店一天購進160件這種鮮奶,X表示當(dāng)天的利潤(單位:元),求X的分布列與數(shù)學(xué)期望及方差;

2)若便利店一天購進160件或170件這種鮮奶,僅從獲得利潤大的角度考慮,你認為應(yīng)購進160件還是170件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大;

3)設(shè)棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, 三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過元的概率;

(2)該公司從收取的每件快遞的費用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,直線l的極坐標方程為:

(1)求曲線C的極坐標方程;

(2)設(shè)直線θ=與直線l交于點M,與曲線C交于P,Q兩點,已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)證明:BD⊥平面ABB1A1

(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大。

查看答案和解析>>

同步練習(xí)冊答案