【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調(diào)查統(tǒng)計,通過數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(輛/千米)與車流密度(千米/小時)之間存在如下關(guān)系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當(dāng)車流密度在時,車流速度是車流密度的一次函數(shù);車流密度一旦達到該路段交通完全癱瘓(車流速度為零).
(1)求關(guān)于的函數(shù)
(2)已知車流量(單位時間內(nèi)通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸分別有生活小區(qū)和,其中,三點共線,與的延長線交于點,測得,,,,,若以所在直線分別為軸建立平面直角坐標系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.
(1)求的值.
(2)現(xiàn)準備建一座橋,其中分別在上,且,的橫坐標為.寫出橋的長關(guān)于的函數(shù)關(guān)系式,并標明定義域;當(dāng)為何值時,取到最小值?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{xn}是各項均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2.
(1)求數(shù)列{xn}的通項公式;
(2)如圖,在平面直角坐標系xOy中,依次連接點P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線P1P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).f(t),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)令,求x的取值范圍;
(2)若規(guī)定每天中f(t)的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的上頂點與拋物線()的焦點重合.
(1)設(shè)橢圓和拋物線交于, 兩點,若,求橢圓的方程;
(2)設(shè)直線與拋物線和橢圓均相切,切點分別為, ,記的面積為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,,下列結(jié)論中正確的是( )
A. B.
C. 是數(shù)列中的最大值 D. 數(shù)列無最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、和,要求點是的中點,點在邊上,點在邊時上,且.
(1)設(shè),試求的周長關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費用均為元,試問如何設(shè)計才能使鋪路的總費用最低?并求出最低總費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,與均為邊長是2的等邊三角形,平面平面CBE,點O是BE的中點。
(1)求證:;
(2)求直線AB與平面ACE所成角的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com