【題目】已知橢圓的短軸長為2,離心率.過橢圓的右焦點(diǎn)作直線l(不與軸重合)與橢圓交于不同的兩點(diǎn),.

1)求橢圓的方程;

2)試問在軸上是否存在定點(diǎn),使得直線與直線恰好關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1;(2)存在點(diǎn)滿足條件.

【解析】

1)由題意知,,解出即可;

2)由題意,設(shè),,定點(diǎn)(依題意,),設(shè)直線的方程為,與橢圓的方程聯(lián)立并消元,得,,根據(jù)題意,化簡整理得,解出即可.

解:(1)由題意知,,

解得

∴橢圓的方程為:;

2)存在定點(diǎn),滿足直線與直線恰好關(guān)于軸對(duì)稱;

由題設(shè)知,直線的斜率不為0,設(shè)直線的方程為,

與橢圓的方程聯(lián)立,消元整理得,

設(shè),定點(diǎn)(依題意,),

由韋達(dá)定理可得,,,

直線與直線恰好關(guān)于軸對(duì)稱,則直線與直線的斜率互為相反數(shù),

,即,

,

,

整理得,,

,即,

∴當(dāng),即時(shí),直線與直線恰好關(guān)于軸對(duì)稱,

綜上:在軸上存在點(diǎn),滿足直線與直線恰好關(guān)于軸對(duì)稱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠AB兩條生產(chǎn)線生產(chǎn)同款產(chǎn)品,若該產(chǎn)品按照一、二、三等級(jí)分類,則每件可分別獲利10元、8元、6元,現(xiàn)從AB生產(chǎn)線的產(chǎn)品中各隨機(jī)抽取100件進(jìn)行檢測,結(jié)果統(tǒng)計(jì)如下圖:

I)根據(jù)已知數(shù)據(jù),判斷是否有的把握認(rèn)為一等級(jí)產(chǎn)品與生產(chǎn)線有關(guān)?

II)求抽取的200件產(chǎn)品的平均利潤;

III)估計(jì)該廠若產(chǎn)量為2000件產(chǎn)品時(shí),一等級(jí)產(chǎn)品的利潤.

附:獨(dú)立性檢驗(yàn)臨界值表

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)共有1000人,其中男生700人,女生300人,為了了解該校學(xué)生每周平均體育鍛煉時(shí)間的情況以及經(jīng)常進(jìn)行體育鍛煉的學(xué)生是否與性別有關(guān)(經(jīng)常進(jìn)行體育鍛煉是指:周平均體育鍛煉時(shí)間不少于4小時(shí)),現(xiàn)在用分層抽樣的方法從中收集200位學(xué)生每周平均體育鍛煉時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),其頻率分布直方圖如圖.已知在樣本數(shù)據(jù)中,有40位女生的每周平均體育鍛煉時(shí)間超過4小時(shí),根據(jù)獨(dú)立性檢驗(yàn)原理(

附:,其中.

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

A.95%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時(shí)間與性別無關(guān)

B.90%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時(shí)間與性別有關(guān)

C.90%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時(shí)間與性別無關(guān)

D.95%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時(shí)間與性別有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省從2021年開始,高考采用取消文理分科,實(shí)行的模式,其中的“1”表示每位學(xué)生必須從物理、歷史中選擇一個(gè)科目且只能選擇一個(gè)科目.某校高一年級(jí)有2000名學(xué)生(其中女生900人).該校為了解高一年級(jí)學(xué)生對(duì)“1”的選課情況,采用分層抽樣的方法抽取了200名學(xué)生進(jìn)行問卷調(diào)查,下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.

性別

選擇物理

選擇歷史

總計(jì)

男生

________

50

女生

30

________

總計(jì)

________

________

200

1)求,的值;

2)請(qǐng)你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由.

0.100

0.050

0.025

0.010

0.005

0.001/span>

2.706

3.841

5.024

6.635

7.879

10.828

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓.

)求橢圓的方程;

)設(shè)為原點(diǎn),過原點(diǎn)的直線(不與軸垂直)與橢圓交于、兩點(diǎn),直線、軸分別交于點(diǎn)、.問:軸上是否存在定點(diǎn),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】武漢市掀起了轟轟烈烈的十日大會(huì)戰(zhàn),要在10天之內(nèi),對(duì)武漢市民做一次全員檢測,徹底摸清武漢市的詳細(xì)情況.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:

方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000.

方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn));否則,若呈陽性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn)這樣,該組個(gè)人的血總共需要化驗(yàn). 假設(shè)此次檢驗(yàn)中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè). 試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求的單調(diào)遞增區(qū)間;

2)求證:曲線在區(qū)間上有且只有一條斜率為2的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(在花卉進(jìn)行硬枝扦插過程中,常需要用生根粉調(diào)節(jié)植物根系生長.現(xiàn)有20株使用了生根粉的花卉,在對(duì)最終花卉存活花卉死亡進(jìn)行統(tǒng)計(jì)的同時(shí),也對(duì)在使用生根粉2個(gè)小時(shí)后的生根量進(jìn)行了統(tǒng)計(jì),這20株花卉生根量如下表所示,其中生根量在6根以下的視為不足量,大于等于6根為足量”.現(xiàn)對(duì)該20株花卉樣本進(jìn)行統(tǒng)計(jì),其中花卉存活13.已知花卉存活但生根量不足量的植株共1.

編號(hào)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

生根量

6

8

3

8

9

5

6

6

2

7

7

5

9

6

7

8

8

4

6

9

1)完成列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為花卉的存活生根足量有關(guān)?

生根足量

生根不足量

總計(jì)

花卉存活

花卉死亡

總計(jì)

20

2)若在該樣本生根不足量的植株中隨機(jī)抽取3株,求這3株中恰有1花卉存活的概率.

參考數(shù)據(jù):

獨(dú)立性檢驗(yàn)中的,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與正三角形的邊長均為2,它們所在平面互相垂直,平面,平面

(1)求證:平面平面

(2)若,求二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案