【題目】已知橢圓的離心率為,點(diǎn)在橢圓.

)求橢圓的方程;

)設(shè)為原點(diǎn),過(guò)原點(diǎn)的直線(不與軸垂直)與橢圓交于兩點(diǎn),直線軸分別交于點(diǎn)、.問(wèn):軸上是否存在定點(diǎn),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

【答案】;()存在,點(diǎn)的坐標(biāo)為.

【解析】

)利用橢圓的離心率結(jié)合,求出,得到橢圓方程;

)設(shè),由題意及橢圓的對(duì)稱性可知,求出、的方程,求出的坐標(biāo),假設(shè)存在定點(diǎn)使得,得到,求出,即可說(shuō)明存在點(diǎn)坐標(biāo)為滿足條件.

)由題意得,解得,所以,橢圓的方程為

)設(shè),由題意及橢圓的對(duì)稱性可知,

則直線的方程為,直線的方程為,

點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為.

假設(shè)存在定點(diǎn)使得,

(也可以轉(zhuǎn)化為斜率來(lái)求),

,即,即,所以,

所以存在點(diǎn)坐標(biāo)為滿足條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,,D,E,F分別為線段,,的中點(diǎn).

1)證明:平面;

2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了治理空氣污染,某市設(shè)個(gè)監(jiān)測(cè)站用于監(jiān)測(cè)空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、、個(gè)監(jiān)測(cè)站,并以個(gè)監(jiān)測(cè)站測(cè)得的的平均值為依據(jù)播報(bào)該市的空氣質(zhì)量.

1)若某日播報(bào)的,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;

2)如圖是月份天的的頻率分布直方圖,月份僅有內(nèi).

①某校參照官方公布的,如果周日小于就組織學(xué)生參加戶外活動(dòng),以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動(dòng)的概率;

②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進(jìn)行研究,求抽取的這兩天中值都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,,,點(diǎn),,分別是棱,,的中點(diǎn).

1)求證:平面;

2)求證:直線平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)函數(shù),當(dāng)時(shí),恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為2,離心率.過(guò)橢圓的右焦點(diǎn)作直線l(不與軸重合)與橢圓交于不同的兩點(diǎn),.

1)求橢圓的方程;

2)試問(wèn)在軸上是否存在定點(diǎn),使得直線與直線恰好關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長(zhǎng)線上且滿足點(diǎn)的軌跡為.

1)求曲線的極坐標(biāo)方程;

2)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,平面平面,,,,,.

1)求多面體的體積;

2)已知是棱的中點(diǎn),在棱是否存在點(diǎn)使得,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定合格”“不合格兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:合格5分,不合格0.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:

等級(jí)

不合格

合格

得分

頻數(shù)

6

a

24

b

1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);

2)其他條件不變?cè)谠u(píng)定等級(jí)為合格的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;

3)用分層抽樣的方法,從評(píng)定等級(jí)為合格不合格的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案