7.若函數(shù)y=f(x)的定義域是[0,3],則函數(shù)g(x)=$\frac{f(2x)}{|x|+x}$的定義域是( 。
A.[0,1)∪(1,2]B.$(0,1)∪(1,\frac{3}{2}]$C.$(0,\frac{3}{2}]$D.[1,6]

分析 由函數(shù)y=f(x)的定義域是[0,3]求解f(2x)的定義域,結(jié)合|x|+x≠0即可求得函數(shù)g(x)=$\frac{f(2x)}{|x|+x}$的定義域.

解答 解:∵函數(shù)y=f(x)的定義域是[0,3],
∴由0≤2x≤3,得0$≤x≤\frac{3}{2}$.
則由$\left\{\begin{array}{l}{0≤x≤\frac{3}{2}}\\{|x|+x≠0}\end{array}\right.$,解得$0<x≤\frac{3}{2}$.
∴函數(shù)g(x)=$\frac{f(2x)}{|x|+x}$的定義域是(0,$\frac{3}{2}$].
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問(wèn)題的求解方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合M={x∈N|x2-3x<4},N={x||x|<2},則M∩N=(  )
A.{x|-2≤x<1}B.{x|-2<x<1}C.{0}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]內(nèi)遞減,那么實(shí)數(shù)a的取值范圍為( 。
A.a≤-3B.a≥-3C.a≤5D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{\sqrt{2}}{2}t\\ y=2+\frac{\sqrt{2}}{2}t\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsin2θ-4cos θ=0,已知直線l與曲線C相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.假設(shè)你家訂了一盒牛奶,送奶人可能在早上6:30---7:30之間把牛奶送到你家,你離開家去學(xué)校的時(shí)間在早上7:00-8:00之間,則你在離開家前能得到牛奶的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)是定義在[-n,n]上的奇函數(shù),且f(x)在[-n,n]上的最大值為a,則函數(shù)F(x)=f(x)+3在[-n,n]上的最大值與最小值之和為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義:如果函數(shù)f(x)在[m,n]上存在x1,x2(m<x1<x2<n)滿足f′(x1)=$\frac{f(n)-f(m)}{n-m}$,f′(x2)=$\frac{f(n)-f(m)}{n-m}$,則稱函數(shù)f(x)是[m,n]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{3}$,$\frac{1}{2}$)B.($\frac{1}{2}$,3)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知i是虛數(shù)范圍,若復(fù)數(shù)z滿足$\frac{4}{1+z}=1-i$,則$z•\overline z$=(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.對(duì)于任意的兩個(gè)正數(shù)m,n,定義運(yùn)算⊙:當(dāng)m、n都為偶數(shù)或都為奇數(shù)時(shí),m⊙n=$\frac{m+n}{2}$;當(dāng)m、n為一奇一偶時(shí),m⊙n=$\sqrt{mn}$,設(shè)集合A={(a,b)|a⊙b=4,a,b∈N*},則集合A的子集個(gè)數(shù)為210-1..

查看答案和解析>>

同步練習(xí)冊(cè)答案