【題目】水培植物需要一種植物專用營(yíng)養(yǎng)液,已知每投放個(gè)單位的營(yíng)養(yǎng)液,它在水中釋放的濃度 (/升)隨著時(shí)間 ()變化的函數(shù)關(guān)系式近似為,其中若多次投放,則某一時(shí)刻水中的營(yíng)養(yǎng)液濃度為每次投放的營(yíng)養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營(yíng)養(yǎng)液的濃度不低于4(/)時(shí),它才能有效.

1若只投放一次2個(gè)單位的營(yíng)養(yǎng)液,則有效時(shí)間最多可能達(dá)到幾天?

2若先投放2個(gè)單位的營(yíng)養(yǎng)液,3天后再投放個(gè)單位的營(yíng)養(yǎng)液,要使接下來的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效,試求的最小值.

【答案】(1) 3天;(2) .

【解析】試題分析:1由題意可知營(yíng)養(yǎng)液有效則需滿足由此得,解不等式可得故最多可達(dá)3天;2設(shè), 分別為第一、二次投放營(yíng)養(yǎng)液的濃度, 為水中的營(yíng)養(yǎng)液的濃度,由題意得上恒成立,可得上恒成立,求得上的最大值即可得到的最小值。

試題解析:

1營(yíng)養(yǎng)液有效則需滿足,

,

即為,

解得,

所以營(yíng)養(yǎng)液有效時(shí)間最多可達(dá)3天;

2解法一:設(shè)第二次投放營(yíng)養(yǎng)液的持續(xù)時(shí)間為天,

則此時(shí)第一次投放營(yíng)養(yǎng)液的持續(xù)時(shí)間為,;

設(shè)為第一次投放營(yíng)養(yǎng)液的濃度, 為第二次投放營(yíng)養(yǎng)液的濃度, 為水中的營(yíng)養(yǎng)液的濃度;

,

,

由題意得上恒成立,

上恒成立,

,則,

當(dāng)且僅當(dāng),時(shí)等號(hào)成立;

因?yàn)?/span>

所以的最小值為.

:要使接下來的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效, 的最小值為.

解法二:設(shè)兩次投放營(yíng)養(yǎng)液后的持續(xù)時(shí)間為天,

則第一次投放營(yíng)養(yǎng)液的持續(xù)時(shí)間為天,

第二次投放營(yíng)養(yǎng)液的持續(xù)時(shí)間為天,且,

設(shè)為第一次投放營(yíng)養(yǎng)液的濃度, 為第二次投放營(yíng)養(yǎng)液的濃度, 為水中的營(yíng)養(yǎng)液的濃度;

,

由題意得上恒成立

上恒成立

當(dāng)且僅當(dāng)時(shí)等號(hào)成立;

所以的最小值為.

:要使接下來的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效, 的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣1.
(1)對(duì)于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求實(shí)數(shù)m的取值范圍;
(2)若對(duì)任意實(shí)數(shù)x1∈[1,2].存在實(shí)數(shù)x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列不等式:

,


照此規(guī)律,第五個(gè)不等式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算,該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為: ,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.

(1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?

(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:

(1)把直線的參數(shù)方程化為極坐標(biāo)方程,把曲線的極坐標(biāo)方程化為普通方程;

(2)求直線與曲線交點(diǎn)的極坐標(biāo)(≥0,0≤).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m∈R,復(fù)數(shù)z= +(m2+2m﹣3)i,當(dāng)m為何值時(shí),
(1)z∈R;
(2)z是純虛數(shù);
(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面第二象限;
(4)(選做)z對(duì)應(yīng)的點(diǎn)在直線x+y+3=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x﹣y+1=0,當(dāng)x= 時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為( )

若直線,則在平面內(nèi)一定不存在與直線平行的直線.

若直線,則在平面內(nèi)一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi)不一定存在與直線垂直的直線.

若直線,則在平面內(nèi)一定存在與直線垂直的直線.

A. ①③ B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,情況如下.

壽命(h)

100~200

200~300

300~400

400~500

500~600

個(gè) 數(shù)

20

30

80

40

30


(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)估計(jì)元件壽命在100~400h以內(nèi)的在總體中占的比例.

查看答案和解析>>

同步練習(xí)冊(cè)答案