【題目】已知m∈R,復(fù)數(shù)z= +(m2+2m﹣3)i,當(dāng)m為何值時(shí),
(1)z∈R;
(2)z是純虛數(shù);
(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面第二象限;
(4)(選做)z對(duì)應(yīng)的點(diǎn)在直線(xiàn)x+y+3=0上.
【答案】
(1)解:∵m∈R,復(fù)數(shù)z= +(m2+2m﹣3)i為實(shí)數(shù),
∴ ,
解得m=﹣3;
(2)解:∵z是純虛數(shù);
∴ =0,m2+2m﹣3≠0,
解得m=0或m=2;
(3)解:z對(duì)應(yīng)的點(diǎn)位于復(fù)平面第二象限;
∴ <0,m2+2m﹣3>0,
解得m<﹣3或1<m<2.
(4)解:∵z對(duì)應(yīng)的點(diǎn)在直線(xiàn)x+y+3=0上.
∴ +(m2+2m﹣3)+3=0,
解得m=0或 .
【解析】(1)由m∈R,復(fù)數(shù)z= +(m2+2m﹣3)i為實(shí)數(shù),可得 ,解出即可;(2)由z是純虛數(shù);可得 =0,m2+2m﹣3≠0,解得m即可;(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面第二象限;可得 <0,m2+2m﹣3>0,解得m即可;(4)由于z對(duì)應(yīng)的點(diǎn)在直線(xiàn)x+y+3=0上,可得 +(m2+2m﹣3)+3=0,解得m即可.
【考點(diǎn)精析】利用復(fù)數(shù)的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知形如的數(shù)叫做復(fù)數(shù),和分別叫它的實(shí)部和虛部.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿(mǎn)足:對(duì)任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有 <0.則下列結(jié)論正確的是( )
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32)
C.f(log25)<f(0.32)<f(20.3)
D.f(0.32)<f(log25)<f(20.3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且當(dāng)x>0時(shí),f′(x)>0,g′(x)>0,則當(dāng)x<0時(shí)有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水培植物需要一種植物專(zhuān)用營(yíng)養(yǎng)液,已知每投放(且)個(gè)單位的營(yíng)養(yǎng)液,它在水中釋放的濃度 (克/升)隨著時(shí)間 (天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的營(yíng)養(yǎng)液濃度為每次投放的營(yíng)養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營(yíng)養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次2個(gè)單位的營(yíng)養(yǎng)液,則有效時(shí)間最多可能達(dá)到幾天?
(2)若先投放2個(gè)單位的營(yíng)養(yǎng)液,3天后再投放個(gè)單位的營(yíng)養(yǎng)液,要使接下來(lái)的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知直線(xiàn)2x﹣y﹣4=0與直線(xiàn)x﹣2y+1=0交于點(diǎn)p.
(1)求過(guò)點(diǎn)p且垂直于直線(xiàn)3x+4y﹣15=0的直線(xiàn)l1的方程;(結(jié)果寫(xiě)成直線(xiàn)方程的一般式)
(2)求過(guò)點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線(xiàn)l2方程(結(jié)果寫(xiě)成直線(xiàn)方程的一般式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列推理中屬于歸納推理且結(jié)論正確的是( )
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推斷:數(shù)列{an}的前n項(xiàng)和Sn=n2
B.由f(x)=xcosx滿(mǎn)足f(﹣x)=﹣f(x)對(duì)?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2 , 推斷:橢圓 =1的面積S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推斷:對(duì)一切n∈N* , (n+1)2>2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)請(qǐng)寫(xiě)出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓O與圓P相交于A,B兩點(diǎn),圓心P在圓O上,圓O的弦BC切圓P于點(diǎn)B,CP及其延長(zhǎng)線(xiàn)交圓P于D,E兩點(diǎn),過(guò)點(diǎn)E作EF⊥CE,交CB的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:B,P,E,F四點(diǎn)共圓;
(2)若CD=2,CB=2 ,求出由B,P,E,F四點(diǎn)所確定的圓的直徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com