【題目】為一個56元集合.求最小的正整數(shù),使得對集合的任意15個子集,只要它們中間任何七個的并的元素個數(shù)均不少于,則這15個子集中一定存在三個集合,使得它們的交集非空.

【答案】41

【解析】

構造15個子集

.

,,

.

于是,這15個子集中任何三個中必有兩個是組,或者必有兩個是組,三者交集均為空集.

現(xiàn)分析其中任何七個子集的元素個數(shù).

任取其中七個子集,,…,,…,,其中,.

.

故滿足題設的正整數(shù).

下面用反證法證明滿足題設.

假設存在集合的某15個子集,,…,.盡管其中任何七個子集的并集不少于41個元素,但其中任何三個子集的交集均為空集,從而,每個元素至多屬于兩個子集.

分兩種情形討論.

(1)集合的每個元素均恰屬于,…,中兩個子集.

由抽屜原理,知必有一個子集(不妨設為)中至少含有表示不超過實數(shù)的最大整數(shù))個元素.,,…,組成的所有七元子集組,至少共對應個元素.

另一方面,對任一元素,若,則,,…,中只有兩個子集含有,于是,被計算的次數(shù)為;,則,,…,中只有一個子集含有,于是,被計算的次數(shù)為.

,矛盾.

(2)集合可能存在一些元素至多屬于子集,,…,中一個子集.

在不含這些元素的子集中各找一個添入這些元素,直至集合的每個元素均恰含于子集,,…,中兩個子集.于是,改造過的子集,,…,中的任意三個的交仍然為空集.此時,該情形已化為(1),從而,也是矛盾的.

總之,對于集合的任意15個子集,只要它們中任何七個的并的元素個數(shù)均不少于41,則這15個子集中就一定存在三個交集非空的集合.

綜上,滿足題設的最小正整數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】進入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質量.某城市環(huán)保部門試圖探究車流量與空氣質量的相關性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質量指數(shù)的數(shù)據(jù)如下表:

(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關于x的線性回歸方程。

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

注:回歸方程中斜率和截距最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BCAB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MDNPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與二次曲線4個不同的交點,由下面的草圖可以看出,下面三個結論是成立的,請給出證明.

(1).兩曲線的4個交點中,至少有兩個交點位于軸的下方;

(2).拋物線必與軸有兩個不同的交點,記為,

(3).兩曲線的4個交點中,必存在一點,使.

.、、的不同取值會有無數(shù)個圖形,此處僅就,各給出一個示意圖,同時也就限制由圖看出的解答.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.

(1)求橢圓的離心率;

(2)設直線與橢圓交于兩點,若直線的斜率之和為2,證明:過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1中(側棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1,D A1B1的中點.

(1)求證:C1D平面AA1B1B;

(2)當點F BB1上的什么位置時,AB1平面C1DF ?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為倡導全體學生為特困學生捐款,舉行一元錢,一片心,誠信用水活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢。現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如下表:

售出水量x(單位:箱)

7

6

6

5

6

收益y(單位:元)

165

142

148

125

150

(Ⅰ) 若xy成線性相關,則某天售出8箱水時,預計收益為多少元?

(Ⅱ) 期中考試以后,學校決定將誠信用水的收益,以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學金500元;考入年級201—500 名,獲二等獎學金300元;考入年級501名以后的特困生將不獲得獎學金。甲、乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為.

⑴在學生甲獲得獎學金條件下,求他獲得一等獎學金的概率;

⑵已知甲、乙兩名學生獲得哪個等第的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X 的分布列及數(shù)學期望。

附: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為實數(shù).

(1)時,求的最小值;

(2)若存在實數(shù),使得對任意實數(shù)都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的選項為(

①平面外一條直線與平面內(nèi)的一條直線平行,則該直線與此平面平行;

②一個平面內(nèi)的一條直線與另一個平面平行,則這兩個平面平行;

③一條直線與一個平面內(nèi)的兩條直線垂直,則該直線與此平面垂直;

④一個平面過另一個平面的垂線,則這兩個平面垂直.

A.①②B.②③C.①④D.③④

查看答案和解析>>

同步練習冊答案