已知函數(shù)f(x)=
3
sinωxcosωx+cos2ωx+1(ω>0)的最小正周期為π.
(Ⅰ)求ω的值及f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在[0,
π
2
]上的最大值和最小值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)首先根據(jù)恒等變形變形成正弦型函數(shù),進(jìn)一步求出周期和單調(diào)區(qū)間
(Ⅱ)根據(jù)(Ⅰ)的結(jié)論,利用函數(shù)的定義域求三角函數(shù)的值域.
解答: 解:(Ⅰ)f(x)=
3
sinωxcosωx+
1+cos2ωx
2
+1
=
3
2
sin 2ωx+
1
2
cos 2ωx+
3
2

=sin(2ωx+
π
6
)+
3
2

∵ω>0,T=π,
∴ω=1.
故f(x)=sin(2x+
π
6
)+
3
2

2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,解得:kπ-
π
3
≤x≤kπ+
π
6

f(x)的單調(diào)遞增區(qū)間為[kπ-
π
3
,kπ+
π
6
](k∈Z)
(Ⅱ)∵0≤x≤
π
2
,∴
π
6
≤2x+
π
6
6
,
∴-
1
2
≤sin(2x+
π
6
)≤1,
當(dāng)2x+
π
3
=
π
2
,即x=
π
6
時(shí),f(x)取最大值
5
2
;
當(dāng)2x+
π
6
=
6
,即x=
π
2
時(shí),f(x)取得最小值1.
點(diǎn)評:本題考查的知識要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的最小正周期,單調(diào)區(qū)間和最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
1-(x-2)2
與直線y+2=k(x+1)有兩個(gè)相異的交點(diǎn),求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
1
0.25
+(
1
27
)
-
1
3
+
lg23-lg9+1
-lg(
1
3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為定義在R上的偶函數(shù),當(dāng)0≤x≤2時(shí),y=x;當(dāng)x>2時(shí).y=f(x)的圖象是頂點(diǎn)在p(3,4),且過點(diǎn)A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(2,+∞)上的解析式;
(2)在所給的直角坐標(biāo)系直接畫出函數(shù)y=f(x)的圖象;
(3)寫出函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1+an-1=2an(n∈N*,n≥2),且a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn
(1)求an及Sn
(2)令bn=
1
an2-1
(n∈N*),數(shù)列{bn}的前n項(xiàng)和Tn,求證Tn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
1
1-x
)+f(x)=3x,求函數(shù)f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,點(diǎn)E為CD中點(diǎn),
AB
=
a
,
AD
=
b
,則
BE
等于( 。
A、-
1
2
a
-
b
B、-
1
2
a
+
b
C、
1
2
a
-
b
D、
1
2
a
+
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)上年度電價(jià)為0.8元/千瓦時(shí),年用電量為a千瓦時(shí),本年度計(jì)劃將電價(jià)降到0.55元/千瓦時(shí)至0.75元/千瓦時(shí)之間,而用戶期望電價(jià)為0.4元/千瓦時(shí)經(jīng)測算,下調(diào)電價(jià)后新增的用電量與實(shí)際電價(jià)和用戶期望電價(jià)的差成反比(比例系數(shù)為k).即是:新增用電量=
k
實(shí)際電價(jià)-期望電價(jià)
,該地區(qū)電力的成本價(jià)為0.3元/千瓦時(shí).
(1)寫出本年度電價(jià)下調(diào)后,電力部門的收益y與實(shí)際電價(jià)x的函數(shù)關(guān)系式;
(2)設(shè)k=0.2a,當(dāng)電價(jià)最低定為多少時(shí),仍可保證電力部門的收益比上年至少增長20%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=2x-2,則不等式f(log2x)>0的解集為( 。
A、(0,
1
2
B、(
1
2
,1)∪(2,+∞)
C、(2,+∞)
D、(0,
1
2
)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案