【題目】已知:函數(shù).
()求函數(shù)的極值.
()證明:當(dāng)時(shí),.
()當(dāng)時(shí),方程無(wú)解,求的取值范圍.
【答案】(1);(2)見(jiàn)解析;(3)
【解析】試題分析:
(1)根據(jù)導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,然后可得極值.(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)證明是上的增函數(shù),故可得當(dāng)時(shí),,從而證得不等式成立.(3)由當(dāng)時(shí),方程無(wú)解,可得當(dāng)時(shí),恒成立.然后根據(jù)分類(lèi)討論或分離參數(shù)可得實(shí)數(shù)的取值范圍為.
試題解析:
()∵,
∴,
令,得,
當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增.
∴當(dāng)時(shí),函數(shù)有極小值,且極小值為,無(wú)極大值.
()證明:設(shè)函數(shù),則,
由()知在取得極小值,也為最小值,
∴,
∴是上的增函數(shù),
∴當(dāng)時(shí),,
∴.
()當(dāng)時(shí),方程無(wú)解,
即時(shí),無(wú)解,
即時(shí),恒成立.
令,
則,
①時(shí),,在遞增,故,滿(mǎn)足題意;
②時(shí),由()得時(shí)符合題意.
綜上所述,.
∴實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:和點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且與圓相切,圓心的軌跡為曲線(xiàn).
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)四邊形的頂點(diǎn)在曲線(xiàn)上,且對(duì)角線(xiàn)均過(guò)坐標(biāo)原點(diǎn),若 .
(i) 求的范圍;(ii) 求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面, ,點(diǎn)是中點(diǎn).
(1)求證: ;
(2)若, , ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面,,以為鄰邊作平行四邊形,連接.
(1)求證:平面;
(2)若二面角為.
求證:平面平面;
求直線(xiàn)與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)的方程為,拋物線(xiàn):的焦點(diǎn)為,點(diǎn)是拋物線(xiàn)上到直線(xiàn)距離最小的點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),為中點(diǎn),且,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校隨機(jī)抽取200名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:h)的數(shù)據(jù),整理得到數(shù)據(jù)的頻數(shù)分布表和頻率分布直方圖(如圖).
編 號(hào) | 分 組 | 頻 數(shù) |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
續(xù) 表
編 號(hào) | 分 組 | 頻 數(shù) |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合計(jì) | 200 |
(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12 h的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的200名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是
(1)對(duì)于命題使得,則都有;
(2)已知,則
(3)已知回歸直線(xiàn)的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線(xiàn)方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·湖北武漢第二次調(diào)研)如圖是依據(jù)某城市年齡在20歲到45歲的居民上網(wǎng)情況調(diào)查而繪制的頻率分布直方圖,現(xiàn)已知年齡在[30,35),[35,40),[40,45)的上網(wǎng)人數(shù)呈現(xiàn)遞減的等差數(shù)列分布,則年齡在[35,40)的網(wǎng)民出現(xiàn)的頻率為 ( )
A. 0.04 B. 0.06
C. 0.2 D. 0.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為: (為參數(shù), ),將曲線(xiàn)經(jīng)過(guò)伸縮變換: 得到曲線(xiàn).
(1)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;
(2)若直線(xiàn)(為參數(shù))與相交于兩點(diǎn),且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com