【題目】已知圓:和點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)四邊形的頂點(diǎn)在曲線上,且對(duì)角線均過坐標(biāo)原點(diǎn),若 .
(i) 求的范圍;(ii) 求四邊形的面積.
【答案】(I) ;(II)(i) , (ii)
【解析】
(I)求出圓M的圓心,半徑,通過動(dòng)圓P經(jīng)過點(diǎn)N且與圓M相切,設(shè)動(dòng)圓P半徑為r,則 |PM|.曲線E是M,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓.求解即可;
(Ⅱ)把直線AB的方程與橢圓方程聯(lián)立,利用韋達(dá)定理表示及目標(biāo)即可得到結(jié)果.
(I)圓的圓心為,半徑為,點(diǎn)在圓內(nèi),因?yàn)閯?dòng)圓經(jīng)過點(diǎn)且與圓相切,所以動(dòng)圓與圓內(nèi)切。設(shè)動(dòng)圓半徑為,則 .
因?yàn)閯?dòng)圓經(jīng)過點(diǎn),所以, ,所以曲線E是M,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓. 由,得,所以曲線的方程為.
(II)當(dāng)直線AB的斜率不存在時(shí),,所以的最大值為2.
當(dāng)直線的斜率存在時(shí),設(shè)直線AB的方程為,設(shè)
聯(lián)立,得
,
∵
=
因此,
(ii)設(shè)原點(diǎn)到直線AB的距離為d,則
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月1日起我國(guó)實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn)-專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括:①贍養(yǎng)老人費(fèi)用,②子女教育費(fèi)用,③繼續(xù)教育費(fèi)用,④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元,②子女教育費(fèi)用:每個(gè)子女每月扣除1000元,新的個(gè)稅政策的稅率表部分內(nèi)容如下:
級(jí)數(shù) | 一級(jí) | 二級(jí) | 三級(jí) |
每月應(yīng)納稅所得額元(含稅) | |||
稅率 | 3 | 10 | 20 |
現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項(xiàng)附加扣除,則他該月應(yīng)交納的個(gè)稅金額為( )
A.1800B.1000C.790D.560
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計(jì)該學(xué)校高一年級(jí)確定選考生物的學(xué)生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫出結(jié)果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),,
(I)證明:平面平面;
(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項(xiàng)公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得、的值,求出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足:a2a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)通過公式bn=構(gòu)造一個(gè)新的數(shù)列{bn}.若{bn}也是等差數(shù)列,求非零常數(shù)c;
(3)對(duì)于(2)中得到的數(shù)列{bn},求f(n)= (n∈N*)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面是邊長(zhǎng)為的等邊三角形, 為的中點(diǎn),側(cè)棱,點(diǎn)在上,點(diǎn)在上,且, .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)是增函數(shù).
(1)若命題為真命題,求的取值范圍;
(2)若滿足為假命題為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù).
()求函數(shù)的極值.
()證明:當(dāng)時(shí),.
()當(dāng)時(shí),方程無解,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com